Angewandte
Chemie
[7] For approaches to b-substituted esters based on chiral-auxiliary
as the solvent to achieve complete conversions and to avoid
undesired 1,2-addition products. Although slightly longer
reaction times (3–5 h) were needed than for aliphatic
substrates, the method proved to be highly effective and
afforded exclusively the desired 1,4-addition products with
enantioselectivities ranging from 88–98% ee. Finally, prelimi-
nary results indicate that aryl moieties that bear donor and
acceptor substituents are tolerated, even those with poten-
tially competitive groups, such as nitrile groups.
strategies, see: a) W. Oppolzer, H. J. Lꢀher, Helv. Chim. Acta
1981, 64, 2808 – 2811; b) W. Oppolzer, T. Stevenson, Tetrahedron
Lett. 1986, 27, 1139 – 1140; c) C. Fang, T. Ogawa, H. Suemune, K.
Sakai, Tetrahedron: Asymmetry 1991, 2, 389 – 398; d) A. Alex-
akis, R. Sedrani, P. Mangeney, J. F. Normant, Tetrahedron Lett.
1988, 29, 4411 – 4414; for an example based on stoichiometric
chiral additives, see: e) F. Xu, R. D. Tillyer, D. M. Tschaen,
E. J. J. Grabowski, P. J. Reider, Tetrahedron: Asymmetry 1998, 9,
1651 – 1655.
[8] For a catalytic approach based on an asymmetric 1,4-hydro-
silylation of a,b-unsaturated esters, see: a) B. H. Lipshutz, J. M.
Servesko, B. R. Taft, J. Am. Chem. Soc. 2004, 126, 8352 – 8353;
b) D. H. Apella, Y. Moritani, R. Shintani, E. M. Ferreira, S. L.
Buchwald, J. Am. Chem. Soc. 1999, 121, 9473 – 9474.
[9] For an explanation of the reactivity of a,b-unsaturated carbox-
ylic acid derivatives relative to that of enones on the basis of
their respective LUMO energies, see: S. Matsunaga, T. Kino-
shita, S. Okuda, S. Harada, M. Shibasaki, J. Am. Chem. Soc.
2004, 126, 7559 – 7570.
In conclusion, we have demonstrated that inexpensive and
readily available Grignard reagents and stable dinuclear Cu
complexes can be used for the first time in catalytic
enantioselective conjugate addition reations to simple acyclic
a,b-unsaturated methyl esters. These reactions provide access
to highly valuable b-substituted chiral esters in good yields
and with excellent enantioselectivities (up to 99% ee).
Studies are underway to establish the full scope of this
methodology, as well as to elucidate the reaction mechanism.
[10] For selected recent examples, see: a) M. S. Taylor, E. N. Jacob-
sen, J. Am. Chem. Soc. 2003, 125, 11204 – 11205, and references
therein; b) D. A. Evans, K. A. Scheidt, J. N. Johnston, M. C.
Willis, J. Am. Chem. Soc. 2001, 123, 4480 – 4491; for examples
with heteroatom-based nucleophiles, see: c) C. D. Vanderwall,
E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 14724 – 14725;
d) M. P. Sibi, N. Prabagaran, S. G. Ghorpade, C. P. Jasperse, J.
Am. Chem. Soc. 2003, 125, 11796 – 11797, and references
therein; e) see also references [1a] and [1e].
Received: January 27, 2005
Published online: April 11, 2005
Keywords: asymmetric catalysis · conjugate addition · copper ·
.
enantioselectivity · Grignard reaction
[11] A. W. Hird, A. H. Hoveyda, Angew. Chem. 2003, 115, 1314 –
1317; Angew. Chem. Int. Ed. 2003, 42, 1276 – 1279.
[1] For reviews, see: a) N. Krause, A. Hoffmann-Rꢀder, Synthesis
2001, 171 – 196; b) B. L. Feringa, R. Naasz, R. Imbos, L. A.
Arnold in Modern Organocopper Chemistry, (Ed.: N. Krause),
VCH, Weinheim, 2002, pp. 224 – 258; c) B. L. Feringa, Acc.
Chem. Res. 2000, 33, 346 – 353; d) A. Alexakis, C. Benhaim,
Eur. J. Org. Chem. 2002, 3221 – 3236; e) K. Tomioka, Y. Nagaoka
in Comprehensive Asymmetric Catalysis, Vol. 3 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York, 1999,
pp. 1105 – 1120; f) K. Yamasaki, T. Hayashi, Chem. Rev. 2003,
103, 2829 – 2844.
[2] For recent advances with cyclic systems, see: a) M. Shi, C.-J.
Wang, W. Zhang, Chem. Eur. J. 2004, 10, 5507 – 5516; b) T.
Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem.
Soc. 2003, 125, 11508 – 11509; c) I. J. Krauss, J. L. Leighton, Org.
Lett. 2003, 5, 3201 – 3203.
[3] For recent advances with acyclic enones, see: a) A. P. Duncan,
J. L. Leighton, Org. Lett. 2004, 6, 4117 – 4119; b) A. Alexakis, D.
Polet, S. Rosset, S. March, J. Org. Chem. 2004, 69, 5660 – 5667;
c) P. K. Fraser, S. Woodward, Chem. Eur. J. 2003, 9, 776 – 783;
d) H. Mizutani, S. J. Degrado, A. H. Hoveyda, J. Am. Chem. Soc.
2002, 124, 779 – 781.
[4] For conjugate additions to lactones, see: a) M. T. Reetz, A.
Gosberg, D. Moulin, Tetrahedron Lett. 2002, 43, 1189 – 1191;
b) M. Yan, L.-W. Yang, K.-Y. Wong, A. C. S. Chan, Chem.
Commun. 2000, 115 – 116; c) M. Kanai, Y. Nakagawa, K.
Tomioka, Tetrahedron 1999, 55, 3843 – 3854.
[5] For recent advances with nitroalkenes, see: a) A. Duursma, A. J.
Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2003, 125, 3700 –
3701; b) C. A. Luchaco-Cullis, A. H. Hoveyda, J. Am. Chem.
Soc. 2002, 124, 8192 – 8193, and references therein.
[6] To date, only a Rh-catalyzed asymmetric conjugate addition of
aryl boron reagents to a,b-unsaturated esters has been reported,
but the method is intrinsically unsuitable for the direct addition
of alkyl groups: a) S. Sakuma, M. Sakai, R. Itooka, N. Miyaura, J.
Org. Chem. 2000, 65, 5951 – 5955; b) Y. Takaya, T. Senda, H.
Kurushima, M. Ogasawara, T. Hayashi, Tetrahedron: Asymmetry
1999, 10, 4047 – 4056.
[12] J. Schuppan, A. J. Minnaard, B. L. Feringa, Chem. Commun.
2004, 792 – 793.
[13] With other alkyl zinc reagents only modest selectivities were
observed; see also: A. Alexakis, C. Benhaim, Tetrahedron:
Asymmetry 2001, 12, 1151 – 1157.
[14] a) B. L. Feringa, R. Badorrey, D. Peꢁa, S. R. Harutyunyan, A. J.
Minnaard, Proc. Natl. Acad. Sci. USA 2004, 101, 5834 – 5838;
b) F. Lꢂpez, S. R. Harutyunyan, A. J. Minnaard, B. L. Feringa, J.
Am. Chem. Soc. 2004, 126, 12784 – 12785.
[15] a) For enantioselective additions of Grignard reagents to
lactones, see references [14a] (5 mol% catalyst: 47–82% ee)
and [4c] (32 mol% catalyst: 76–90% ee).
[16] H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer, A.
Togni, Top. Catal. 2002, 19, 3 – 16, and references therein.
[17] A further decrease in the catalyst loading to 0.05 mol% (S/C =
2000:1) still led to 3a with a remarkable 86% ee and 70%
conversion (GC-MS).
[18] Compound 4a was recovered in 82% yield. For related achiral
halogen-bridged dinuclear Cu species, see: a) E. D. Blue, A.
Davis, D. Conner, T. B. Gunnoe, P. D. Boyle, P. S. White, J. Am.
Chem. Soc. 2003, 125, 9435 – 9441; b) S. P. Neo, Z-Y. Zhou,
T. C. W. Mak, T. S. A. Hor, J. Chem. Soc. Dalton Trans. 1994,
3451 – 3458, and references therein.
[19] Alternatively, 4a’ can be prepared by mixing 2a and CuBr·SMe2
in acetonitrile and converted into the dimeric complex 4a by
treatment with halogenated solvents. See Supporting Informa-
tion for the characterization of 4a and 4a’ and further
information.
[20] CCDC 261573 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
ac.uk/data_request/cif.
[21] Sterically hindered Grignard reagents, such as iPrMgBr, and aryl
Grignard reagents, such as PhMgBr, have provided poor results
so far. (iPrMgBr: 26% conversion, 12% ee; PhMgBr: 55%
conversion, 1% ee.)
Angew. Chem. Int. Ed. 2005, 44, 2752 –2756
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2755