10.1002/anie.202108734
Angewandte Chemie International Edition
COMMUNICATION
Table 4. Scope of the reaction of (±)-4 to afford 5 in the presence of catalyst C.
mechanisms of the DYKAT step. The results will be reported in
due course.
Acknowledgements
We thank Dr. Michael Chandro Roy, Research Support Division,
Okinawa Institute of Science and Technology Graduate
University for mass analyses. This study was supported by the
Okinawa Institute of Science and Technology Graduate
University.
Keywords: asymmetric catalysis • dynamic kinetic asymmetric
transformation • Michael addition • organocatalysis • spiro
compounds
[1]
[2]
J. Steinreiber, K. Faber, H. Griengle, Chem. Eur. J. 2008, 14, 8060.
a) Z.-J. Zhang, Y.-H. Wen, J. Song, L.-Z. Gong, Angew. Chem. Int. Ed.
2021, 60, 3268; Angew. Chem. 2021, 60, 3268; b) H. Chu, J. Cheng, J.
Yang, Y.-L. Guo, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 21991;
Angew. Chem. 2020, 132, 22175; c) C.-X. Hu, L. Chen, Di. Hu, X. Song,
Z.-C. Chen, W. Du, Y.-C. Chen Org. Lett. 2020, 22, 8973; d) R. He, X.
Huo, L. Zhao, F. Wang, L. Jiang, J. Liao, W. Zhang, J. Am. Chem. Soc.
2020, 142, 8097; e) A. Matsumoto, K. Asano, S. Matsubara, Org. Lettt.
2019, 21, 2688; f) K.-Q. Chen, Z.-H. Gao, S. Ye, Angew. Chem. Int. Ed.
2019, 58, 1183; Angew. Chem. 2019, 131, 1195; g) P.-J. Yang, L. Qi, Z.
Liu, G. Yang, Z. Chai, J. Am. Chem. Soc. 2018, 140, 17211; h) G.
Zhang, S. Yang, X. Zhang, Q. Lin, D. K. Das, J. Liu, X. Fang, J. Am.
Chem. Soc. 2016, 138, 7932; i) C. G. Goodman, J. S. Johnson, J. Am.
Chem. Soc. 2015, 137, 14574; j) L. Yang, H. Zheng, L. Luo, J. Nan, J.
Liu, Y. Wang, X. Luan, J. Am. Chem. Soc. 2015, 137, 4876; k) M. T.
Corbett, J. S. Johnson, Angew. Chem. Int. Ed. 2014, 53, 255; Angew.
Chem. 2014, 126, 259; l) Y.-M. Wang, C. N. Kuzniewski, V. Rauniyar, C.
Hoong, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 12972; m) B.-C.
Hong, N. S. Dange, C.-S. Hsu, J.-H. Liao, G.-H. Lee, Org. Lett. 2011,
13, 1338; n) B. M. Trost, M. Osipov, G. Dong, J. Am. Chem. Soc. 2010,
132, 15800; o) R. Millet, A. M. Träff, M. L. Patrus, J.-E. Bäckvall, J. Am.
Chem. Soc. 2010, 132, 15182; p) J. D. Jolliffe, R. J. Armstrong, M. D.
Smith, Nat. Chem. 2017, 9, 558.
The absolute and relative stereochemistries of the major
enantiomer of 5a obtained in the presence of catalyst C was
determined by X-ray crystal structural analysis; the absolute
configuration of 5a is shown in Table 3.[12]
To demonstrate the utility of the reaction, product 5a was
transformed to derivatives 6-9. During these reactions, the
enantiopurity of 5a was retained (Scheme 3).
[3]
[4]
a) C. Liu, J.-H. Xie, Y.-L. Li, J.-Q. Chen, Q.-L. Zhou, Angew. Chem. Int.
Ed. 2013, 52, 593; Angew. Chem. 2013, 125, 621; b) Z.-Q. Rong, Y.
Zhang, R. H. B. Chua, H.-J. Pan, Y. Zhao, J. Am. Chem. Soc. 2015,
137, 4944; c) M. Edin, J. Steinreiber, J.-E. Bäckvall, Proc. Natl. Acad.
Sci. 2004, 101, 5761; d) O. M. Beleh, E. Miller, F. D. Toste, S. J. Miller,
J. Am. Chem. Soc. 2020, 142, 16461.
a) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104; b) N. Ye, H.
Chen, E. A. Wold, P.-Y. Shi, J. Zhou, ACS Infect. Dis. 2016, 2, 382; c)
N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org. Biomol. Chem. 2012,
10, 5165; d) D. Cheng, Y. Ishihara, B. Tan, C. F. Barbas, ACS Catal.
2014, 4, 743 and references cited therein; e) A. K. Franz, P. D.
Dreyfuss, S. L. Schreiber, J. Am. Chem. Soc. 2007, 129, 1020; f) B.
Han, X.-H. He, Y.-Q. Liu, G. He, C. Peng, J.-L. Li, Chem. Soc. Rev.
2021, 50, 1522.
[5]
a) C. Qian, P. Li, J. Sun, Angew. Chem. Int. Ed. 2021, 60, 5871; Angew.
Chem. 2021, 133, 5935; b) J. Wang, X.-Z. Zheng, J.-A. Xiao, K. Chen,
H.-Y. Xiang, X.-Q. Chen, H. Yang, Org. Lett. 2021, 23, 963; c) T. He, L.
Peng, S. Li, F. Hu, C. Xie, S. Huang, S. Jia, W. Qin, H. Yan, Org. Lett.
2020, 22, 6966; d) R.-J. Yan, B.-X. Liu, B.-X. Xiao, W. Du, Y.-C. Chen,
Org. Lett. 2020, 22, 4240; e) Q.-G. Tang, S.-L. Cai, C.-C. Wang, G.-Q.
Lin, X.-W. Sun, Org. Lett. 2020, 22, 3351; f) Z.-J. Zhang, L. Zhang, R.-L.
Geng, J. Song, X.-H. Chen, L.-Z. Gong, Angew. Chem. Int. Ed. 2019,
58, 12190; Angew. Chem. 2019, 131, 12318; g) J.-R. Huang, M. Sohail,
T. Taniguchi, K. Monde, F. Tanaka, Angew. Chem. Int. Ed. 2017, 56,
5853; Angew. Chem. 2017, 129, 5947; h) S. Jayakumar, K. Louven, C.
Strohmann, K. Kumar, Angew. Chem. Int. Ed. 2017, 56, 15945; Angew.
Scheme 3. Transformations of 5a.
In summary, we have developed the organocatalytic
DYKAT-based diastereo- and enantioconvergent Michael-Henry
reactions of racemic diastereomers that afford spirooxindoles
bearing furan-fused ring systems. In the DYKAT, all the four
stereoisomers originated by central and axial chiralities were
transformed to the single diastereomer product in high yields
with high enantioselectivities. We are investigating the detailed
4
This article is protected by copyright. All rights reserved.