Paper
RSC Advances
aer ethyl acetate was evaporated the product was crystallized 15 C. N. Rao and S. Hoz, J. Am. Chem. Soc., 2011, 133, 14795–
with ethanol to give 4c (86%), and 4d (88%) or distillation under 14803.
vacuum to give 4f (82%), 4g (88%), 4h (86%), 4i (92%), 4j (91%), 16 X. Yang, L. Zhao, T. Fox, Z.-X. Wang and H. Berke, Angew.
and 4k (88%).
Chem., Int. Ed., 2010, 49, 2058–2062.
17 M. Freifelder, in Catalytic Hydrogenation in Organic Synthesis
Procedures and Commentary, John Wiley and Sons, Inc., New
York, 1978, pp. 65–77.
Conclusions
In conclusion, we have developed a new method using Aliquat 18 W. A. Silva, M. T. Rodrigues Jr, N. Shankaraiah,
336, granular PTFE and Zn powder for the reduction of high
melting-point imines and nitroarenes in aqueous media at
R. B. Ferreira, C. K. Andrade, R. A. Pilli and L. S. Santos,
Org. Lett., 2009, 11, 3238–3241.
room temperature. The relationships of the reaction rates with 19 S. U. Son, K. H. Park and Y. K. Chung, Org. Lett., 2002, 4,
the amount of granular PTFE, the solubilities and melting 3983–3986.
points of the substrates and the products are discussed. The 20 R. Aldea and H. Alper, J. Organomet. Chem., 2000, 593–594,
cost of our catalyst is much lower than those of the catalysts 454–457.
reported in the literature. The advantages of our procedure are 21 (a) S. Werkmeister, S. Fleischer, K. Junge and M. Beller,
fast, inexpensive, easy to carry out and in excellent yields. Since
Aliquat 336, granular PTFE and water are highly recyclable,
inexpensive, and safe, this procedure should be easily adaptable
for industrial production.
Chem.–Asian J., 2012, 7, 2562–2568; (b) S. Werkmeister,
S. Fleischer, S. Zhou, K. Junge and M. Beller,
ChemSusChem, 2012, 5, 777–782.
22 K. Takaki, Y. Tsubaki, S. Tanaka, F. Beppu and Y. Fujiwara,
Chem. Lett., 1990, 203–204.
23 T. Vaijayanthi and A. Chadha, Tetrahedron: Asymmetry, 2008,
19, 93–96.
Notes and references
1 (a) X. Xiao, H. Wang, Z. Huang, J. Yang, X. Bian and Y. Qin, 24 T. Tsukinoki, Y. Mitoma, S. Nagashima, T. Kawaji,
Org. Lett., 2006, 8, 139–142; (b) Y. Moglie, F. Alonso, C. Vitale,
M. Yusb and G. Radivoy, Tetrahedron, 2006, 62, 2812–2819;
I. Hashimoto and M. Tashiro, Tetrahedron Lett., 1998, 39,
8873–8876.
(c) J. R. Miecznikowski and R. H. Crabtree, Polyhedron, 25 (a) M. A. Harrad, B. Boualy, L. E. Firdoussi, A. Mehdi,
2004, 23, 2857–2872.
2 A. C. Fernandes and C. C. Romao, Tetrahedron Lett., 2005, 46,
8881–8883.
3 (a) R. O. Hutchins and M. K. Hutchins, in Comprehensive
Organic Synthesis, Pergamon Press, Oxford, 1991, vol. 8, p.
25; (b) R. Bolton, T. N. Danks and J. M. Paul, Tetrahedron
Lett., 1994, 35, 3411–3412; (c) B. T. Cho and S. K. Kang,
C. Santi, S. Giovagnoli, M. Nocchetti and M. A. Ali, Catal.
Commun., 2013, 32, 92–100; (b) H. Engelhardt, I. J. Esch,
D. Kuhn, R. A. Smits, O. P. Zuiderveld, J. Dobler, M. Mayer,
S. Lips, H. Arnhof, D. Scharn, E. E. Haaksma and R. Leurs,
Eur. J. Med. Chem., 2012, 54, 660–668; (c) G. G. Cruz,
K. Groschner, C. O. Kappe and T. N. Glasnov, Tetrahedron
Lett., 2012, 53, 3731–3734.
˜
Synlett, 2004, 9, 1484–1488; (d) B. T. Cho and S. K. Kang, 26 (a) X. Sui, R. Zhu, G. Li, X. Ma and Z. Gu, J. Am. Chem. Soc.,
Tetrahedron, 2005, 61, 5725–5734.
4 R. F. Borch, M. D. Bernstein and H. D. Durstl, J. Am. Chem.
Soc., 1971, 93, 2897–2904.
5 A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff
and R. D. Shah, J. Org. Chem., 1996, 61, 3849–3862.
6 F. Kazemi, A. R. Kiasat and E. Sarvestani, Chin. Chem. Lett.,
2008, 19, 1167–1170.
7 B. C. Ranu, A. Sarkar and A. Majee, J. Org. Chem., 1997, 62,
1841–1842.
8 T. Aida, N. Kuboki, K. Kato, W. Uchikawa, C. Matsuno and
S. Okamoto, Tetrahedron Lett., 2005, 46, 1667–1669.
9 I. Shibata, T. Moriuchi-Kawakami, D. Tanizawa, T. Suwa,
E. Sugiyama, H. Matsuda and A. Baba, J. Org. Chem., 1998,
63, 383–385.
10 M. Minato, Y. Fujiwara and T. Ito, Chem. Lett., 1995, 647–648.
11 E. Mizushima, M. Yamaguchi and T. Yamagishi, Chem. Lett.,
1997, 237–238.
2013, 135, 9318–9321; (b) S. Katayama, N. Ae, T. Kodo,
S. Masumoto, S. Hourai, C. Tamamura, H. Tanaka and
R. Nagata, J. Med. Chem., 2003, 46, 691–701; (c)
S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung and
T.-M. Lee, J. Polym. Sci., Part A: Polym. Chem., 2013, 51,
2925–2938.
27 (a) M. Bolourtchian, M. Mirza-Aghayan, M. Rahimifard and
R. Boukherroub, Appl. Organomet. Chem., 2010, 24, 477–
480; (b) S. M. Lopes, F. Palacios, A. Lemos and T. M. Melo,
Tetrahedron, 2011, 67, 8902–8909.
28 (a) C. Wang and J. Sperry, Tetrahedron, 2013, 69, 4563–4577;
(b) C. Deraeve, Z. Guo, R. S. Bon, W. Blankenfeldt,
R. DiLucrezia, A. Wolf, S. Menninger, E. A. Stigter,
S. Wetzel, A. Choidas, K. Alexandrov, H. Waldmann,
R. S. Goody and Y.-W. Wu, J. Am. Chem. Soc., 2012, 134,
7384–7391; (c) C. Ramarao, R. Nandipati, R. Navakoti and
R. Kottamasu, Tetrahedron Lett., 2012, 53, 637–640; (d)
H.-F. Chen, Y.-M. Cui, J.-G. Guo and H.-X. Lin, Dyes Pigm.,
2012, 94, 583–591.
12 M. Mirza-Aghayana, R. Boukherroubb and M. Rahimifarda,
Appl. Organomet. Chem., 2013, 27, 174–176.
13 B. K. Banik, L. Hackfeld and F. F. Becker, Synth. Commun., 29 S. M. El-Sheikh, A. A. Ismail and J. F. Al-Sharabb, New J.
2001, 31, 1581–1586. Chem., 2013, 37, 2399–2407.
14 H. Kotsuki, N. Yoshimura, I. Kadota, Y. Ushio and M. Ochi, 30 W. Zhu, Y. Yu, H. Yang, L. Hua, Y. Qiao, X. Zhao and Z. Hou,
Synthesis, 1990, 5, 401–402.
Chem.–Eur. J., 2013, 19, 2059–2066.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 33599–33606 | 33605