ActiVation of Pentafluorophenylsilanes
SCHEME 1
C6F5 group is a strong electron withdrawer and a variety of
pentafluorophenyl silanes can be readily synthesized by con-
ventional organometallic synthesis.11 As electrophiles, the
iminium cations were chosen since they constitute an important
class of carbocationic electrophiles. The iminium cations can
be obtained as stable isolable salts or can be generated in situ
using known protocols.12 Moreover, amines resulting from the
addition of a C6F5 group onto an iminium cation may be
interesting as potential pharmaceutical and agrochemical agents.13
We first performed quantum mechanical analysis of the C6F5
group transfer process in order to identify the most efficient
combination of the reagents required for C-C bond forming
reaction. Subsequently, the results of theory were verified
experimentally.
However, besides significant affinity toward silicon, these Lewis
bases serve as extremely strong nucleophiles and therefore are
incompatible with reactive electrophiles, such as carbocations
(Scheme 1, path b). As a consequence, only poorly electrophilic
neutral reagents, such as aldehydes, Michael acceptors, and
imines, have been employed in Lewis base mediated C-C bond
forming reactions.3 In this regard, an important question
arises: what are the optimal conditions for Lewis base activation
of silicon reagents and for transferring a nucleophilic leaving
group from the activated intermediate onto a carbocationic
electrophile? To solve this problem for a specific combination
of a leaving group and an electrophile, it is necessary to find a
proper combination of silicon substituents and a Lewis base.
In particular, the following criteria have to be fulfilled: (a) the
silicon atom of the reagent should be prone to an interaction
with the Lewis base for the formation of a five-coordinate
siliconate; (b) the five-coordinate intermediate should readily
transfer the leaving group to the electrophile; and (c) the reaction
of the Lewis base with the silane must compete efficiently with
its reaction with the electrophile. Correspondingly, a selection
of a weaker Lewis base and increasing the silicon Lewis acidity
appears as a major direction which should be pursued.
While considering trimethylsilyl derivatives, the acetate anion
is the weakest competent activating Lewis base employed so
far, as was demonstrated by Mukaiyama and co-workers for
the transfer of a trifluoromethyl group onto aldehydes and
electron-poor imines.5-7 On the other hand, we have recently
reported that an increase of silicon Lewis acidity can be achieved
by introducing the electron-withdrawing pentafluorophenyl
groups.8-10 In this respect, it becomes interesting to find optimal
conditions for the application of weak Lewis bases for activating
silicon reagents in C-C bond forming reactions.
Selection of the Theoretical Method
All computations were carried out using the Gaussian 03
program.14 The stationary points were verified by vibrational
analysis, and the thermodynamics was calculated at 298.15 K.
The B3LYP hybrid density functional method15 and ab initio
second-order perturbation theory16 (MP2) were selected for the
initial evaluation.17,18 The interaction of fluorotrimethylsilane
(8) (a) Dilman, A. D.; Belyakov, P. A.; Korlyukov, A. A.; Struchkova,
M. I.; Tartakovsky, V. A. Org. Lett. 2005, 7, 2913. (b) Dilman, A. D.;
Arkhipov, D. E.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A.
Izv. Russ. Chem. Bull. 2006, 55, 517 [Engl. transl. of IzV. Acad. Nauk.,
Ser. Khim. 2006, 498]. (c) Dilman, A. D.; Gorokhov, V. V.; Belyakov, P.
A.; Struchkova, M. I.; Tartakovsky, V. A. Tetrahedron Lett. 2006, 47, 6217.
(9) For acetate ion induced C6F5 group transfer processes, see: (a)
Dilman, A. D.; Levin, V. V.; Belyakov, P. A.; Struchkova, M. I.;
Tartakovsky, V. A. Synthesis 2006, 447. (b) Levin, V. V.; Dilman, A. D.;
Belyakov, P. A.; Korlyukov, A. A.; Struchkova, M. I.; Antipin, M. Y.;
Tartakovsky, V. A. Synthesis 2006, 489.
(10) For the enhanced reactivity of silyl enol ethers bearing a (C6F5)3Si
fragment in aldol reaction, see: Dilman, A. D.; Belyakov, P. A.; Korlyukov,
A. A.; Tartakovsky, V. A. Tetrahedron Lett. 2004, 45, 3741.
(11) (a) Dilman, A. D.; Arkhipov, D. E.; Korlyukov, A. A.; Ananikov,
V. P.; Danilenko, V. M.; Tartakovsky, V. A. J. Organomet. Chem. 2005,
690, 3680. (b) Whittingham, A.; Jarvie, A. W. P. J. Organomet. Chem.
1968, 13, 125.
(12) (a) Kantlehner, W. In ComprehensiVe Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 6, p 485. (b)
Rehn, S.; Ofial, A. R.; Mayr, H. Synthesis 2003, 1790. (c) Kleinman, E. F.
In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 2, p 893.
Herein we present our theoretical and experimental studies
in an attempt to address the latter problem. The pentafluoro-
phenyl silanes were selected as model compounds because the
(13) Kim, C.-Y.; Chang, J. S.; Doyon, J. B.; Baird, T. T., Jr.; Fierke, C.
A.; Jain, A.; Christianson, D. W. J. Am. Chem. Soc. 2000, 122, 12125.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(4) At the same time, allylic trichlorosilanes undergo coupling with
aldehydes in the presence neutral Lewis bases, such as amides, phosphor-
amides, and pyridine-N-oxides, but the efficiency of these reactions is likely
associated with concerted character of transition state. See: (a) Kobayashi,
S.; Nishio, K. J. Org. Chem. 1994, 59, 6620. (b) Denmark, S. E.; Fu, J.
Chem. Commun. 2003, 167. (c) Malkov, A. V.; Dufkova, L.; Farrugia, L.;
Kocovsky, P. Angew. Chem., Int. Ed. 2003, 42, 3674.
(5) (a) Mukaiyama, T.; Kawano, Y.; Fujisawa, H. Chem. Lett. 2005, 34,
88. (b) Kawano, Y.; Fujisawa, H.; Mukaiyama, T. Chem. Lett. 2005, 34,
422. (c) Kawano, Y.; Mukaiyama, T. Chem. Lett. 2005, 34, 894. (d) For an
example of an application of acetate ion as Lewis base for activation of
Me3SiAr, see: Effenberger, F.; Spiegler, W. Chem. Ber. 1985, 118, 3872.
(6) Trifluoromethylation of carbonyl compounds with Me3SiCF3 using
neutral Lewis bases was reported. (a) Trimethylamine-N-oxide showed
moderate activity, while HMPA and pyridine-N-oxide were ineffective:
Prakash, G. K. S.; Mandal, M.; Panja, C.; Mathew, T.; Olah, G. A. J. Fluor-
ine Chem. 2003, 123, 61. (b) DMSO as solvent: Iwanami, K.; Oriyama, T.
Synlett 2006, 112. (c) P(t-Bu)3 was noted to be an active catalyst, but its
ability to behave as silicon-specific activator is arguable: Mizuta, S.; Shibata,
N.; Sato, T.; Fujimoto, H.; Nakamura, S.; Toru, T. Synlett 2006, 267.
(7) For reviews on Lewis base promoted trifluoromethylation reactions,
see: (a) Prakash, G. K. S.; Yudin, A. K. Chem. ReV. 1997, 97, 757. (b)
Prakash, G. K. S.; Mandal, M. J. Fluorine Chem. 2001, 112, 123. (c) Singh,
R. P.; Shreeve, J. M. Tetrahedron 2000, 56, 7613. (d) Langlois, B. R.;
Billard, T.; Roussel, S. J. Fluorine Chem. 2005, 126, 173.
(15) (a) Becke, A. D. Phys. ReV. A 1988, 38, 3098. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B 1988, 37, 785. (c) Becke, A. D. J. Chem.
Phys. 1993, 98, 5648.
(16) Moller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.
(17) For a review of earlier quantum chemical treatment of hypercoor-
dinate silicon species, see: Apeloig, Y. In The Chemistry of Organic Silicon
Compounds; Patai, S., Rappoport, Z., Eds. John Wiley & Sons: New York,
1989; p 57.
J. Org. Chem, Vol. 71, No. 19, 2006 7215