5172 J. Agric. Food Chem., Vol. 55, No. 13, 2007
Reino et al.
triethylamine or sodium hydrogencarbonate as bases (previously
reported methods A1 and A2) (15).
not previously been used in the development of models to
predict fungicidal activity against B. cinerea.
2-Iodo-N′,N′-dimethylbenzohydrazide (2d). Yield, 75% (method
A1); mp 155-157 °C (toluene). IR (KBr) νmax: 3217 (NH), 1650 (CO)
cm-1. 1H NMR (CDCl3): δ ) 7.86-6.98 (m, 4 H, aromatic H, Z and
E rot.), 6.59 (br s, E rot.) and 6.48 (br s, Z rot.) (1 H, NH), 2.71 (s, Z
rot.) and 2.50 (s, E rot.) (6 H, CH3) (Z rot./E rot. ratio: 78/22). 13C
NMR (CDCl3): δ ) 172.5 (E rot.) and 167.0 (Z rot.) (CO), 142.3 (E
rot.) and 140.7 (Z rot.) (C-1), 139.4 (Z rot.) and 138.9 (E rot.) (C-3),
131.0 (Z rot.) and 129.9 (E rot.) (C-4), 128.3 (Z rot.), 128.0 (Z rot.),
127.4 (E rot.) and 126.3 (E rot.) (C-5, -6), 92.6 (Z rot.) and 91.4 (E
rot.) (C-2), 48.4 (E rot.) and 47.1 (Z rot.) (CH3). EI MS: m/z (%) )
290 (M+, 10), 248 (89), 247 (79), 231 (100), 203 (45), 105 (14), 76
(40), 59 (77). C9H11IN2O (290.10) calcd: C, 37.26; H, 3.82; N, 9.66;
I, 43.74. Found: C, 36.98; H, 4.01; N, 9.82; I, 43.50%.
Additionally, our ready access to compounds containing a
benzohydrazide skeleton analogous to the structure of the
commercial fungicide benodanil (1) and our interest in the
control of B. cinerea has prompted us to undertake the synthesis
of several N′,N′-disubstituted benzohydrazides.
N′,N′-Dibenzylbenzohydrazide (3a). Yield, 89% (method A2); mp
168-170 °C (EtOH); lit. (18), 169 °C.
N′,N′-Dibenzyl-2-chlorobenzohydrazide (3b). Yield, 89% (method
A2); mp 125-127 °C (2-PrOH). IR (KBr) νmax: 3216 (NH), 1658 (CO)
1
cm-1. H NMR (CDCl3): δ ) 7.50-6.28 (m, 15 H, aromatic H and
NH, Z and E rot.), 4.30 (s, Z rot.) and 3.78 (s, E rot.) (4 H, CH2) (Z
rot./E rot. ratio: 78/22). 13C NMR (CDCl3): δ ) 171.2 (E rot.) and
166.0 (Z rot.) (CO), 137.2 (Z rot.) and 135.3 (E rot.) (C-1′’), 135.6 (E
rot.) and 134.3 (Z rot.) (C-1), 131.0 (Z rot.) and 129.6 (E rot.) (C-4),
130.9 (Z rot.) and 129.92 (E rot.) (C-2), 129.90 (Z rot.) and 128.9 (E
rot.) (C-3), 129.8 (E rot.), 129.3 (Z rot.), 128.4 (E rot.) and 128.3 (Z
rot.) (C-2′′, -3′′, -5′′, -6′′), 129.2 (Z rot.) and 128.0 (E rot.) (C-6), 127.7
(E rot.) and 127.4 (Z rot.) (C-4′’), 126.7 (Z rot.) and 126.1 (E rot.)
(C-5), 61.5 (E rot.) and 59.4 (Z rot.) [C-1′ (CH2)]. EI MS: m/z (%) )
350 (M+, 0.4), 259 (14), 211 (28), 196 (53), 195 (66), 194 (56), 156
(41), 139 (55), 111 (22), 91 (100). C21H19ClN2O (350.85) calcd: C,
71.89; H, 5.46; N, 7.98; Cl, 10.10. Found: C, 72.02; H, 5.70; N, 8.08;
Cl, 10.21%.
N′,N′-Dibenzyl-2-iodobenzohydrazide (3c). Yield, 90% (method
A2); mp 139-141 °C (EtOH). IR (KBr) νmax: 3218 (NH), 1654 (CO)
In this paper, we describe both the synthesis and the results
of our tests on the fungistatic activity of these benzohydrazides.
Several aspects of the stereochemical relationship between their
structure and biological activity are discussed. Another aim is
to develop a predictive model of the antifungal activity for this
group of compounds and to determine the contribution made
by several structural fragments to the relationship, between
structure and biological activity.
1
cm-1. H NMR (CDCl3): δ ) 7.86-6.24 (m, 15 H, aromatic H and
NH, Z and E rot.), 4.31 (s, Z rot.) and 3.81 (s, E rot.) (4 H, CH2) (Z
rot./E rot. ratio: 80/20). 13C NMR (CDCl3): δ ) 173.2 (E rot.) and
168.3 (Z rot.) (CO), 141.7 (E rot.) and 140.4 (Z rot.) (C-1), 139.7 (Z
rot.) and 138.6 (E rot.) (C-3), 137.2 (Z rot.) and 135.1 (E rot.) (C-1′′),
131.0 (Z rot.) and 129.8 (E rot.) (C-4), 129.8 (E rot.), 129.3 (Z rot.),
128.4 (E rot.) and 128.3 (Z rot.) (C-2′′, -3′′, -5′′, -6′′), 127.9 (Z rot.),
127.7 (Z rot.), 127.5 (E rot.) and 127.2 (E rot.) (C-5, -6), 127.8 (E
rot.) and 127.4 (Z rot.) (C-4′′), 92.6 (Z rot.) and 91.5 (E rot.) (C-2),
61.3 (E rot.) and 59.4 (Z rot.) [C-1′ (CH2)]. EI MS: m/z (%) ) 442
(M+, 0.4), 351 (14), 248 (54), 231 (55), 211 (31), 203 (24), 196 (58),
195 (71), 194 (47), 118 (10), 105 (15), 91 (100). C21H19IN2O (442.30)
calcd: C, 57.03; H, 4.33; N, 6.33; I, 28.69. Found: C, 57.21; H, 4.22;
N, 6.51; I, 28.91%.
MATERIALS AND METHODS
We prepared a series of substituted benzohydrazides 2a-d, 3a-d,
4a-e, and 5 by acylating the hydrazines with the corresponding acid
chlorides (15). These compounds were then screened for antifungal
activity at 50, 100, and 200 µg/mL against the phytopathogen B.
cinerea. The reference substance, benodanil (1) (50 µg/mL), was
included in all tests as a positive control. The X-ray crystal structures
of compounds 3a,b were determined.
General Experimental Procedures. Melting points were determined
with a Reichert-Jung Thermovar hot-stage microscope. 1H (300 MHz)
and 13C (75, 100, or 125 MHz) NMR spectra were recorded on Varian
Inova 300, Varian Inova 400, or Varian Unity 600 spectrometers.
Chemical shifts are reported in ppm from TMS (δ scale) but were
measured against the solvent signal (CDCl3: δH ) 7.24; δC ) 77.0).
Z/E rotamer ratios of hydrazides were determined using the relative
integrals for the N[CHn]2 signals corresponding to each isomer in the
1H NMR spectra. δC Values reported in the literature for 2-substituted
benzoic acids (16) and esters (17) were consulted for the assignment
of 13C NMR spectra. Electron impact (EI) mass spectra were obtained
at 70 eV on a Hewlett-Packard 5973 MSD spectrometer. Microanalyses
were performed by the Departamento de Ana´lisis, Centro de Qu´ımica
Orga´nica “Manuel Lora Tamayo”, CSIC (Madrid, Spain).
N′,N′-Dibenzyl-2-methylbenzohydrazide (3d). Yield, 91% (method
A2); mp 126-128 °C (2-PrOH). IR (KBr) νmax: 3226 (NH), 1665 (CO)
1
cm-1. H NMR (CDCl3): δ ) 7.50-6.30 (m, 15 H, aromatic H and
NH, Z and E rot.), 4.25 (s, Z rot.) and 3.69 (s, E rot.) (4 H, CH2), 2.06
(s, Z rot.) and 1.89 (s, E rot.) (3 H, CH3) (Z rot./E rot. ratio: 91/9). 13
C
NMR (CDCl3): δ ) 173.7 (E rot.) and 169.2 (Z rot.) (CO), 137.3 (Z
rot.) and 135.2 (E rot.) (C-1′′), 136.2 (Z rot.) and 134.8 (E rot.) (C-2),
135.5 (E rot.) and 134.9 (Z rot.) (C-1), 130.7 (Z rot.) and 130.0 (E
rot.) (C-4), 129.7 (Z rot.) and 128.9 (E rot.) (C-3), 129.5 (E rot.), 129.2
(Z rot.), 128.5 (E rot.) and 128.3 (Z rot.) (C-2′′, -3′′, -5′′, -6′′), 127.8
(E rot.) and 127.5 (Z rot.) (C-4′′), 126.7 (E rot.) and 126.5 (Z rot.)
(C-6), 125.4 (Z rot.) and 124.5 (E rot.) (C-5), 61.8 (E rot.) and 59.8 (Z
rot.) [C-1′ (CH2)], 19.04 (Z rot.) and 18.98 (E rot.) (CH3). EI MS: m/z
(%) ) 330 (M+, 1), 239 (14), 211 (37), 196 (73), 195 (62), 194 (46),
136 (50), 119 (63), 104 (6), 91 (100). C22H22N2O (330.43) calcd: C,
79.97; H, 6.71; N, 8.48. Found: C, 80.12; H, 6.43; N, 8.28%.
N-Piperidinobenzamide (4a). Yield, 82% (method A1); mp 197-
199 °C (toluene); lit. (19), 193-195 °C; lit. (20), 198-199 °C.
2-Iodo-N-piperidinobenzamide (4d). Yield, 88% (method A1); mp
Preparation of Substituted Benzohydrazides. The preparation of
hydrazides 2a-c, 4b,c, and 5 has been previously described (15).
Hydrazides 2d, 4a,d,e, and 3a-d were prepared by acylation of the
corresponding hydrazines with acid chlorides using, respectively,
147-149 °C (toluene). IR (KBr) νmax: 3212 (NH), 1663 (CO) cm-1
.
1H NMR (CDCl3): δ ) 7.84-6.98 (m, 4 H, aromatic H, Z and E rot.),
6.57 (br s, E rot.) and 6.40 (br s, Z rot.) (1 H, NH), 2.88 (m, Z rot.)