While the sum of angles at phosphorus (302.7°) for 3a is slightly
larger than that of compounds 4a (297.7°) and 3b (290.8°), each
phosphorus center is pyramidal.
electron-transfer pathways, thus explaining the lack of CNC or PNC
bond formation. Further work to increase the utility of ArPNPMe3
for ligand synthesis is currently underway. The authors thank the
National Science Foundation (CHE-0202040) for support.
The present method for preparing 1,3,2-dioxophospholanes adds
to the large number of reactions of ortho-quinones with phosphorus
compounds,7 but distinguishes itself in that reactions to produce
P(III) compounds (via low coordinate phosphorus compounds) are
not often as simple or high yielding. One can also compare the
current reactions to a limited set of reactions of these ortho-
quinones with non-carbonyl stabilized Wittig reagents RA2CNPR3
that yield 1,3-dioxoles.8 Such reactions may proceed by radical or
Notes and references
‡ Selected spectroscopic data for 3–4 (See ESI for full details): 3a mp
234–235 °C. 1H NMR (CDCl3): d 2.03 (s, 12H); 2.26 (s, 6H); 6.81 (s, 4H);
3
4
7.12 (dd, 2H, JHH = 7.6 Hz, JPH = 2.0 Hz); 7.66 (t, 1H, J = 7.6 Hz).
13C{1H} NMR (200 MHz, CDCl3): d 21.04 (s); 21.16 (d, J = 1.1 Hz);
127.96 (s); 130.05 (d, J = 1.8 Hz); 134.14 (s); 135.46 (d, J = 8.0); 136.15
(d, J = 2.2 Hz); 137.59 (s); 137.80 (s); 138.59 (s); 144.52 (s); 147.29 (s);
147.81 (s). 31P{1H} (CDCl3): d 230.1. 3b 1H NMR (CDCl3): d = 1.21 (s,
9H); 1.54 (d, 18H, J = 1.1 Hz); 7.13 (d, 2H, J = 1.1 Hz). 31P{1H} NMR
(CDCl3): d = 217.5. 4a mp 154–156 °C. 1H NMR (CDCl3): d = 1.23 (s,
9H); 1.25 (s, 9H); 1.76 (s, 6H); 2.14 (s, 6H); 2.36 (s, 6H); 5.87 (d, 1H, J =
2.0 Hz); 6.73 (d, 1H, J = 2.1 Hz); 6.78 (s, 2H); 6.94 (dd, 2H, 3JHH = 7.6
Hz, 4JPH = 1.8 Hz); 6.99 (s, 2H,); 7.47 (t, 1H, J = 7.6 Hz). 13C{1H} NMR
(200 MHz, CDCl3): d 20.81 (d, J = 5.3 Hz); 21.33 (s); 21.67 (s); 29.89 (s);
31.63 (s); 34.36 (s), 34.45 (s); 108.07 (d, J = 1.6 Hz); 116.34 (s); 127.86 (s);
128.28 (s); 130.07 (s); 131.56 (s); 134.01 (s); 135.94 (d, J = 2.0 Hz); 136.64
(s); 136.86 (d, J = 1.7 Hz); 137.32 (d, J = 4.6 Hz); 143.69 (s); 144.30 (s);
144.69 (s); 146.94 (s); 147.06 (s). 31P{1H} NMR (CDCl3): d 194.3. 4b mp
100–101 °C. 1H NMR (CDCl3): d 1.12 (s, 9H); 1.20 (s, 9H); 1.24 (s, 9H);
1.52 (s, 18H); 6.65 (d, 1H, J = 1.9 Hz); 6.75 (d, 1H, J = 2.2 Hz); 7.01 (d,
2H, J = 1.0 Hz). 13C{1H} NMR (300 MHz, CDCl3): d 30.23 (s); 31.02 (s);
31.57 (s); 34.14 (d, J = 9.2 Hz); 34.36 (s); 34.44 (s); 34.54 (s); 39.49 (d, J
= 2.7 Hz); 108.03 (s); 115.70 (s); 121.21 (s); 134.22 (s); 141.28 (s); 142.41
(s); 144.00 (s); 146.94 (d, J = 7.4 Hz); 149.54 (s); 156.62 (d, J = 6.8 Hz).
31P{1H} NMR (CDCl3): d 195.9.
§
Crystal data for 3a. C30H25Cl4O2P, M = 590.27, monoclinic, a =
8.451(3), b = 24.614(8), c = 14.068(4) Å, a = 90.00, b = 105.55(2), g =
90.00, U = 2819.1(14) Å3, T = 293 K, space group P2(1)/c, Z = 4, m(Mo–
Ka) = 0.503 mm21, 4432 reflections measured, 1851 unique (Rint
=
0.0618) which were used in all calculations. Final R1 = 0.0800, wR(F2) was
0.1900 (all data). CCDC 216923.
Crystal data for 4a. C38H45O2P, M = 564.71, monoclinic, a = 13.623(2),
b = 11.2320(17), c = 22.372(3) Å, a = 90.00, b = 98.531(12), g = 90.00,
U = 3385.4(9) Å3, T = 293 K, space group P2(1)/c, Z = 4, m(Mo–Ka) =
0.111 mm21, 5315 reflections measured, 2896 unique (Rint = 0.0342)
which were used in all calculations. Final R1 = 0.0930, wR(F2) was 0.2680
crystallographic data in .cif format.
Fig. 2 Packing diagram for 3a illustrating p-stacking in the crystal.
1 S. Shah and J. D. Protasiewicz, Chem. Commun., 1998, 1585.
2 (a) P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc.,
1990, 112, 2407; (b) P. Le Floch and F. Mathey, Synlett, 1990, 171; (c)
S. Shah and J. D. Protasiewicz, Coord. Chem. Rev., 2000, 210/1, 181.
3 Some recent reports: (a) A. S. Ionkin and W. Marshall, Chem. Commun,
2003, 710–711; (b) A. S. Ionkin and W. Marshall, Heteroat. Chem., 2002,
13, 662–666; (c) T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa
and M. Yoshifuji, Angew. Chem., Int. Ed., 2001, 40, 4501; (d) M.
Yoshifuji, Bull. Chem. Soc. Jpn., 1997, 70, 28813.
4 R. Appel, F. Knoll and I. Ruppert, Angew. Chem., Int. Ed. Engl., 1981,
20, 731.
5 M. Freytag, P. G. Jones, R. Schmutzler and M. Yoshifuji, Heteroat.
Chem., 2001, 12, 300.
6 B. Twamley, C. D. Sofield, M. M. Olmstead and P. P. Power, J. Am.
Chem. Soc., 1999, 121, 3357.
7 F. H. Osman and F. A. Al-Samahy, Chem. Rev., 2002, 102, 629.
8 For example: (a) V. B. Z. V. A. Voleva, A. L. Khristyuk, V. V. Ershov
and N. S. Enikolopyan, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl.
Transl.), 1983, 32, 402; (b) M. M. B. L. S. Sidky, Phosphorus Sulfur
Relat. Elem., 1984, 19, 27; (c) W. M. Abdou, Phosphorus, Sulfur Silicon
Relat. Elem., 1992, 66, 2.
Fig. 3 Structural diagram for 4a. Selected bond distances (Å) and angles (°):
P(1)–C(1), 1.851(6), P(1)–O(1) 1.673(4); P(1)–O(1) 1.656(4);
O(1)P(1)O(2), 93.4(2); C(1)P(1)O(1), 100.6(2)
103.7(2)
;
C(1)P(1)O(2)
=
C h e m . C o m m u n . , 2 0 0 4 , 1 4 6 – 1 4 7
147