Organic Letters
Letter
3655. (e) Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20,
11733−11764. (f) Wang, Z.; Sun, J. Synthesis 2015, 47, 3629.
(g) Barbato, K. S.; Luan, Y.; Ramella, D.; Panek, J. S.; Schaus, S. E.
Org. Lett. 2015, 17, 5812.
(5) For methods to access vicinal, tertiary carbon stereocenters, see:
(a) Kanbayashi, N.; Hosoda, K.; Kato, M.; Takii, K.; Okamura, T.;
Onitsuka, K. Chem. Commun. 2015, 51, 10895. (b) Krautwald, S.;
Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014,
136, 3020. (c) Zhang, D.; Zhu, F.; Wang, Y.; Hu, X.; Chen, S.; Hou,
C.; Hu, X. Chem. Commun. 2014, 50, 14459. (d) Oliver, S.; Evans, P.
A. Synthesis 2013, 45, 3179. (e) Geherty, M. E.; Dura, R. D.; Nelson,
S. G. J. Am. Chem. Soc. 2010, 132, 11875.
(6) For examples of allylation reactions of quinone methides, see:
(a) Zhang, Z.; Dong, N.; Li, X. Chem. Commun. 2017, 53, 1301.
(b) Sawama, Y.; Shishido, Y.; Yanase, T.; Kawamoto, K.; Goto, R.;
Monguchi, Y.; Kita, Y.; Sajiki, H. Angew. Chem., Int. Ed. 2013, 52,
1515. (c) Zheng, H.; Hall, D. G. Tetrahedron Lett. 2010, 51, 4256.
(7) For examples of allyl silane additions to α,β-unsaturated
carbonyls, see: (a) Shizuka, M.; Snapper, M. L. Angew. Chem., Int.
Ed. 2008, 47, 5049. (b) Lee, P. H.; Lee, K.; Sung, S.; Chang, S. J. Org.
Chem. 2001, 66, 8646. (c) Organ, M. G.; Dragan, V.; Miller, M.;
Froese, R. D. J.; Goddard, J. D. J. Org. Chem. 2000, 65, 3666. (d) Sato,
M.; Aoyagi, S.; Yago, S.; Kibayashi, C. Tetrahedron Lett. 1996, 37,
9063. (e) Groaning, M. D.; Meyers, A. I. Tetrahedron Lett. 1999, 40,
8071. (f) Panek, J. S.; Jain, N. F. J. Org. Chem. 1993, 58, 2345.
(g) Hosomi, A. Acc. Chem. Res. 1988, 21, 200. (h) Hayashi, M.;
Mukaiyama, T. Chem. Lett. 1987, 16, 289. (i) Majetich, G.; Casares,
A.; Chapman, D.; Behnke, M. J. Org. Chem. 1986, 51, 1745.
(j) Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673.
(8) (a) Liu, J.; Wang, X.; Xu, L.; Hao, Z.; Wang, L.; Xiao, J.
Tetrahedron 2016, 72, 7642. (b) Matsumura, Y.; Suzuki, T.; Sakakura,
A.; Ishihara, K. Angew. Chem., Int. Ed. 2014, 53, 6131. (c) Freeburger,
M. E.; Spialter, L. J. Org. Chem. 1970, 35, 652.
demonstrated the importance of the initial FeCl3-promoted
reaction for the success of the subsequent ring-opening process
and provided a method to selectively access vicinal, methyl
tertiary stereocenters. Crotylation products containing two aryl
halide moieties (6k and 6l) were obtained in excellent yield
and were envisioned to enable future elaboration of the
crotylation products in a divergent fashion.
In conclusion, we have developed an enantioselective
cycloaddition and crotylation reaction of ortho-quinone
methides with a chiral (S,E)-crotyl silane reagent 4 in the
presence of the readily available and inexpensive promoter
FeCl3. The transformation provides access to both the chiral
pyran product 5 as well as the crotylation product 6 with two
contiguous tertiary carbon stereocenters. A TiCl4-mediated
ring opening of the pyran with concomitant elimination of
silicon, or formally a crotylation of the oQM, reaction sequence
was developed in the process to achieve the crotylation
product 6 in good to excellent yields. Studies focused on the
further elaboration and application of this methodology are
ongoing and will be reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopy data for new
(9) (a) Lee, J.; Panek, J. S. J. Org. Chem. 2015, 80, 2959. (b) Wu, J.;
Zhu, K.; Yuan, P.; Panek, J. S. Org. Lett. 2012, 14, 3624. (c) Wu, J.;
Panek, J. S. J. Org. Chem. 2011, 76, 9900. (d) Wu, J.; Becerril, J.; Lian,
Y.; Davies, H. M. L.; Porco, J. A., Jr.; Panek, J. S. Angew. Chem., Int.
Ed. 2011, 50, 5938. (e) Wu, J.; Chen, Y.; Panek, J. S. Org. Lett. 2010,
12, 2112. (f) Zhang, Y.; Panek, J. S. Org. Lett. 2009, 11, 3366.
(g) Beresis, R. T.; Solomon, J. S.; Yang, M. G.; Jain, N. F.; Panek, J. S.
Org. Synth. 1998, 75, 78. (h) Masse, C. E.; Panek, J. S. Chem. Rev.
1995, 95, 1293. (i) Cai, B.; Evans, R. W.; Wu, J.; Panek, J. S. Org. Lett.
2016, 18, 4304.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
(10) (a) Allen, E. E.; Zhu, C.; Panek, J. S.; Schaus, S. E. Org. Lett.
2017, 19, 1878. (b) Luan, Y.; Sun, H.; Schaus, S. E. Org. Lett. 2011,
13, 6480.
The authors declare no competing financial interest.
(11) (S,E)-Crotyl silane 4 was prepared in three steps from the
readily available 3-butyn-2-ol following the procedure detailed in ref
9g by the Panek laboratory.
(12) Weinert, E. E.; Dondi, R.; Colloredo-Metz, S.; Frankenfield, K.
N.; Mitchell, C. H.; Freccero, M.; Rokita, S. E. J. Am. Chem. Soc. 2006,
128, 11940.
ACKNOWLEDGMENTS
■
S.E.S. acknowledges the NIH for support (R01 GM078240).
The authors acknowledge preliminary studies performed by
Dr. Emily E. Allen (Boston University) and Dr. Yi Luan
(Boston University). The authors also thank Dr. Paul Ralifo
and Dr. Norman Lee at the Boston University Chemical
Instrumentation Center for helpful discussions and assistance
with NMR and HRMS.
REFERENCES
■
(1) (a) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. Rev. 2005,
105, 4757. (b) Rokita, S. E. Quinone Methides; Wiley: 2009. (c) Willis,
N. J.; Bray, C. D. Chem. - Eur. J. 2012, 18, 9160.
(2) Singh, M. S.; Nagaraju, A.; Anand, N.; Chowdhury, S. RSC Adv.
2014, 4, 55924.
(3) Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58,
5367.
(4) For asymmetric transformations of oQMs, see: (a) Selenski, C.;
Pettus, T. R. R. J. Org. Chem. 2004, 69, 9196. (b) Pathak, T. P.;
Sigman, M. S. J. Org. Chem. 2011, 76, 9210. (c) Luan, Y.; Schaus, S. E.
J. Am. Chem. Soc. 2012, 134, 19965. (d) Bai, W.; David, J. G.; Feng,
Z.; Weaver, M. G.; Wu, K.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47,
D
Org. Lett. XXXX, XXX, XXX−XXX