(Cyclo-C5H10NH)B(C6F5)3 2 was prepared from B(C6F5)3 (1.60 g, 3.1
mmol) and HNC5H10 (0.31 cm3, 3.1 mmol) following the same procedure
as 1 (1.55 g, 84%). Anal. found: C, 45.74; H, 1.99; N, 2.22%. Calcd. for
C23H11BF15N: C, 46.26; H, 1.86; N, 2.35 %. dH (300 MHz, C6D6, 20 °C)
5.24 (br. m, 1H, NH), 2.94 (d, 4H, J 12.5 Hz, CH2), 1.76 (q, 4H, J 11.7 Hz,
CH2), 1.07 (m, 2H, J 12.5 Hz, CH2); dC (75.47 MHz, C6D6, 20 °C) 50.2,
25.5, 22.5; dB (96.29 MHz, C6D6, 20 °C) 22.1; dF (282.40 MHz, C6D6, 20
°C) 2127.69 (s, 2F, o-F), 2127.76 (s, 2F, o-F), 2142.91 (s, 2F, o-F),
2154.22 (t, 1F, J 19.8 Hz, p-F), 2156.39 (t, 2F, J 22.6 Hz, p-F), 2161.08
(s, 2F, m-F), 2162.72 (m, 2F, m-F), 2163.02 (m, 2F, m-F).
‡
Crystal data for 1: C22H9BF15N, M = 583.1, monoclinic, space group
P21/n (equiv. to no. 14), a = 14.232(1), b = 11.510(1), c = 14.543(1) Å,
b = 117.22(1)°, V = 2118.5(3) Å3, Z = 4, Dc = 1.828 Mg m23, F(000) =
1152, T = 140(1) K, m(MoKa) = 0.200 mm21, l(MoKa) = 0.71073 Å,
12139 reflections measured, 3616 unique (Rint = 0.060), F2 refinement, R1
= 0.033 [I > 2s(I)], wR2 = 0.095 (all data).
Fig. 2 Structure of 2 indicating intramolecular N–H…F–C and inter-
molecular C–H…F–C interactions.
Crystal data for 2: C23H11BF15N, M = 597.1, monoclinic, space group
Pn (equiv. to no. 7), a = 10.186(2), b = 13.026(3), c = 17.501(4) Å, b =
96.63(3)°, V = 2306.5(8) Å3, Z = 4, Dc = 1.720 Mg m23, F(000) = 1184,
T = 140(1) K, m(MoKa) = 0.186 mm21, l(MoKa) = 0.71073 Å, 12844
the Dunitz criteria for X–H…F–C hydrogen bonds. It is
significantly shorter than any previously reported intra- or inter-
molecular C–H…F–C bond.6
There are also weak intermolecular C–H…F–C interactions
(Table 1) linking molecules of 1 in planar nets. By contrast,
2 does not adopt an extended supramolecular structure. There
are two independent molecules in the crystal, linked by a
C–H…F–C interaction (Fig. 2).
Intramolecular C–H…F–C interactions, similar to that ob-
served for 1, between the o-F atoms of fluorinated phenyl
groups and the b-H of the polymeryl chain (Structure I, Chart 1)
have recently been proposed as being responsible for decreasing
the likelihood of b-H transfer and causing the observed
differences in molecular weight between polyalkenes prepared
with phenyl and perfluorophenyl substituted phenoxy-imine
catalysts. The F–Hb distance predicted by the DFT calculations
for this interaction was 2.28 Å.7 However; there was little
structural precedence for bonding between a C–H group and the
o-F of a C6F5 ring. Chan et al. have very recently reported a
model complex with an intramolecular interaction between a
methylene hydrogen atom on a zirconium bonded benzyl group
and a (sp3)-CF3 ligand substituent (H…F 2.47 Å and C–H…F
114°).11 1 and 2 exhibit intra- and inter-molecular hydrogen
bonding to a (sp2)-C6F5 group with structural parameters
suggesting a significantly stronger interaction, comparable to
that found in the DFT studies.
reflections measured, 7190 unique (Rint = 0.042), F2 refinement, R1
=
0.031 [I > 2s(I)], wR2 = 0.075 (all data). CCDC 211286 and 211287. See
.cif or other electronic format.
1 E. Y-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.
2 S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A.
Walker, D. L. Hughes and M. Bochmann, Organometallics, 2002, 21,
451.
3 (a) J. D. Dunitz and R. Taylor, Chem. Eur. J., 1997, 3, 89; (b) V. R.
Thalladi, H. C. Weiss, D. Bläser, R. Boese, A. Nangia and G. R.
Desiraju, J. Am. Chem. Soc., 1998, 120, 8702; (c) G. R. Desiraju, Acc.
Chem. Res., 2002, 35, 565; (d) T. J. Barbarich, C. D. Rithner, S. M.
Miller, O. P. Anderson and S. H. Strauss, J. Am. Chem. Soc., 1999, 121,
4280.
4 (a) A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey,
L. H. Doerrer and M. B. Hursthouse, Chem. Commun., 1998, 2529; (b)
L. H. Doerrer and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1999,
4325; (c) M. J. Drewitt, M. Niedermann and M. C. Baird, Inorg. Chim.
Acta, 2002, 340, 207.
5 D. Chakraborty and E. Y-X. Chen, Organometallics, 2003, 22, 207.
6 The shortest C–H…F–C distance we are aware of was reported for an
intermolecular interaction in 4-fluoroethynylbenzene (2.26 Å): H-C.
Weiss, R. Boese, H. L. Smith and M. M. Haley, Chem. Commun., 1997,
2403; J. Parsch and J. W. Engels, J. Am. Chem. Soc., 2002, 124,
5664.
7 M. Mitani, J-i. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui,
R. Furuyama, T. Nakano, H. Tanaka, S-i. Kojoh, T. Matsugi, N.
Kashiwa and T. Fujita, J. Am. Chem. Soc., 2002, 124, 3327; M. Mitani,
R. Furuyama, J-i. Mohri, J. Saito, S. Ishii, H. Terao, T. Nakano, H.
Tanaka and T. Fujita, J. Am. Chem. Soc., 2003, 125, 4293.
8 In addition to anion 1 a re-examination of the previously published
structures (Flu)B(C6F5)2·NH2CMe3 (R. Duchateau, S. J. Lancaster, M.
The electron-withdrawing properties of organofluorine sub-
stituents are employed widely, both in ligand design and in the
preparation of least coordinating anions.1,12 Our observations
and those of Fujita and Chan suggest that subtle interactions
between X–H groups and organofluorines may have a sig-
nificant influence on catalytic behaviour.
Thornton-Pett and M. Bochmann, Organometallics, 1997, 16, 4995)
5
and (CpB)CpTi(m-NHCMe3)Cl (CpB
=
h -C5H4B(C6F5)2) (S. J.
We are grateful to the Engineering and Physical Sciences
Research Council for a studentship (A. J. M).
Lancaster, S. Al-Benna, M. Thornton-Pett and M. Bochmann, Organo-
metallics, 2000, 19, 1599) identified hitherto unrecognised N–H…F–C
interactions. For further details see reference 9.
Notes and references
9 S. J. Lancaster, A. J. Mountford, D. L. Hughes, M. Schormann and M.
Bochmann, J. Organomet. Chem., 2003, DOI: 10.1016/S0022-
328X(03)00346-2.
10 This adduct must be prepared at low temperature. If warmed to room
temperature significant generation of an iminium salt of [HB(C6F5)3]2
is observed. Related chemistry has been observed in aniline adducts: N.
Millot, C. C. Santini, B. Fenet and J. M. Basset, Eur. J. Inorg. Chem.,
2002, 3328.
11 S. C. F. Kui, N. Zhu and M. C. W. Chan, Angew. Chem., Int. Ed., 2003,
42, 1628.
12 J. Zhou, S. J. Lancaster, D. A. Walker, S. Beck, M. Thornton-Pett and
M. Bochmann, J. Am. Chem. Soc., 2001 , 123, 223.
†
Synthesis: (cyclo-C4H8NH)B(C6F5)3 (1). To a solution of B(C6F5)3
(1.46 g, 2.9 mmol) in toluene (40 cm3) HNC4H8 (0.24 cm3, 2.9 mmol) was
added. After stirring for 1 h the toluene was removed under reduced
pressure. The product was isolated as colourless crystals after recystallisa-
tion from a light petroleum–dichloromethane mixture (1.21 g, 72%). Anal.
found: C, 45.27; H, 1.54; N, 2.40%. Calcd. for C22H9BF15N: C, 45.32; H,
1.56; N, 2.40%. dH (300 MHz, C6D6, 20 °C) 5.80 (br. s, 1H, NH), 2.31 (dt,
4H, J 158.1 and 8.3 Hz, CH2), 0.84 (t, 4H, J 4.0 Hz, CH2); dC (75.47 MHz;
C6D6, 20 °C) 49.56, 23.08; dB (96.29 MHz, C6D6, 20 °C) 23.1; dF (282.40
MHz, C6D6, 20 °C) 2127.90 (br, 4F, o-F), 2143.37 (br, 2F, o-F), 2155.95
(br, 3F, p-F), 2162.81 (br, 6F, m-F).
CHEM. COMMUN., 2003, 2148–2149
2149