Mendeleev Commun., 2008, 18, 289–290
of both compounds while the bands of lower intensities are
415
416
(a)
(b)
396
395
located at about 450–505 nm. These spectra are similar to the
spectrum of tert-butyl-substituted macroheterocyclic compound
of ABABAB type,1,2 and it can evidence the similarity of their
chromophore systems.
Mass spectra of compounds 3 and 4 are characterised by the
presence of peaks corresponding to the molecular ions [M + H]+.
A perfect coincidence of molecular mass as well as the isotope
distributions and calculated values proofs the structures of these
compounds as macrocyclic systems of the ABABAB type
containing three 1,3,4-thiadiazole rings and three substituted
isoindole subunits.
0.8
0.6
0.4
0.2
0.0
0.6
0.4
0.2
0.0
467
465
503
502
400
500
600
400
500
600
l/nm
l/nm
Figure 1 UV-VIS spectra of macroheterocycles in CH2Cl2: (a) 3 (C =
= 3.30 mol dm–3); (b) 4 (C = 3.80 mol dm–3).
1H NMR spectra of compounds 3 and 4, measured in CDCl3,
reveal the signals at 1.37 and 1.25 ppm, respectively, which can
be assigned to the protons of alkyl groups. The multiplets at
7.79–7.02 (3) and 7.78–7.25 ppm (4) are due to the resonance
of the protons of benzene rings, and the singlets at 12.27 (3) and
12.36 ppm (4) characterise the absorbance of the protons of
imino groups. The presence of these signals in the low field
highlights the non-aromatic character of ABABAB macrocycle.
The IR spectra of compounds 3 and 4 are similar to each
other. Thus, in the spectrum of compound 3, a series of bands at
2959, 2918 and 2849 cm–1 characterises the C–H stretching
vibrations of tert-butyl groups. The band at 3217 cm–1 is induced
by N–H vibrations of imino groups. The strong bands at 2916
and 2848 cm–1 in the spectrum of 4 can be assigned to C–H
vibrations of methyl groups. The absorption band corresponding
to N–H stretching vibrations of imino groups is observed at
3212 cm–1.
References
The UV-VIS spectra of compounds 3 and 4 shown in Figure 1
are similar. Thus, the strong absorbance bands at 396 and
415 nm (3) and at 395 and 416 nm (4) dominate in the spectra
1
2
3
4
5
6
M. K. Islyaikin, E. A. Danilova, L. D. Yagodarova, S. M. Rodríguez-
Morgade and T. Torres, Org. Lett., 2001, 3, 2153.
N. Kobayashi, S. Inagaki, V. N. Nemykin and T. Nonomura, Angew.
Chem., Int. Ed. Engl., 2001, 40, 2710.
M. K. Islyaikin, E. A. Danilova and L. D. Yagodarova, Izv. Vuz. Khim.
Khim. Tekhnol., 2003, 46, 3 (in Russian).
J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed. Engl., 2003, 42,
5134.
F. Fernández-Lázaro, T. Torres, B. Hauschel and M. Hanack, Chem.
§
2,14(15),26(27)-Tri(4-tert-butylphenoxy)-5,36:12,17:24,29-triimino-
7,10:19,22:31,34-trithia-[f,p,z]-tribenzo-1,2,4,9,11,12,14,19,21,22,24,29-
dodecazacyclotriaconta-2,4,6,8,10,12,14,16,18,20,22,24,26,28,30-penta-
decaene 3 was obtained following general procedure from 4-(4-tert-butyl-
phenoxy)phthalonitrile (50 mg, 0.181 mmol) and 2,5-diamino-1,3,4-thia-
diazole (21 mg, 0.181 mmol). Yield, 15 mg (22%). UV-VIS [CH2Cl2,
Rev., 1998, 98, 563.
l
max/nm (log e)]: 396 (4.92), 415 (4.94), 467 (sh), 503 (4.21). IR (thin
F. Fernández-Lázaro, J. de Mendoza, O. Mó, S. Rodríguez-Morgade,
T. Torres, M. Yànez and J. Elguero, J. Chem. Soc., Perkin Trans. 2,
1989, 797.
film, n/cm–1): 3217, 2959, 2918, 2849, 1629, 1508, 1478, 1407, 1367,
1327, 1272, 1235, 1214, 1101, 1032, 928, 837, 716. 1H NMR (CDCl3) d:
12.27 (s, NH), 7.79, 7.40, 7.13, 7.02 (m, H arom.), 1.37 (s, CMe). Found
(%): C, 62.46; H, 4.31; N, 17.51; S, 7.59. Calc. for C60H51N15O3S3 (%):
C, 63.98; H, 4.56; N, 18.65; S, 8.54. MS (MALDI-TOF), m/z: 1126
[M + H]+.
7
8
G. de la Torre and T. Torres, J. Org. Chem., 1996, 61, 6446.
M. S. Rodríguez-Morgade, B. Cabezón, S. Esperanza and T. Torres,
Chem. Eur. J., 2001, 7, 2407.
9
M. K. Islyaikin, O. G. Khelevina, T. N. Lomova and E. A. Danilova,
Izv. Vuz. Khim. Khim. Tekhnol., 2004, 47, 35 (in Russian).
2,14(15),26(27)-Tri(3,5-dimethylphenoxy)-5,36:12,17:24,29-triimino-
7,10:19,22:31,34-trithia-[f,p,z]-tribenzo-1,2,4,9,11,12,14,19,21,22,24,29-
dodecazacyclotriaconte-2,4,6,8,10,12,14,16,18,20,22,24,26,28,30-penta-
decaene 4 was obtained following general procedure from 4-(3,5-dimethyl-
phenoxy)phthalonitrile (45 mg, 0.181 mmol) and 2,5-diamino-1,3,4-thia-
diazole (21 mg, 0.181 mmol). Yield, 14 mg (20%). UV-VIS [CH2Cl2,
10 T. N. Lomova, E. E. Suslova, E. A. Danilova and M. K. Islyaikin, Zh.
Fiz. Khim., 2005, 79, 263 (Russ. J. Phys. Chem., 2005, 79, 201).
11 T. N. Lomova, E. G. Mozhzhukhina, E. A. Danilova and M. K. Islyaikin,
Koord. Khim., 2006, 32, 869 (Russ. J. Coord. Chem., 2006, 32, 837).
12 V. V. Plakhtinsky, P. S. Kaninsky, G. S. Mironov, O. A. Yasinsky and
I. G. Abramov, Zh. Org. Khim., 1992, 28, 1232 (in Russian).
13 E. A. Danilova, M. K. Islyaikin, N. A. Kolesnikov and T. V. Melenchuk,
RF Patent, 2313518, 2007.
l
max/nm (log e)]: 395 (4.95), 416 (4.97), 465 (sh), 502 (4.23). IR (thin
film, n/cm–1): 3212, 2916, 2849, 1615, 1478, 1406, 1368, 1326, 1294,
1272, 1226, 1200, 1136, 1100, 1033, 950, 834, 741, 716. 1H NMR (CDCl3)
d: 12.36 (s, NH), 7.78, 7.39, 7.25 (m, H arom.), 1.25 (s, Me). Found (%):
C, 62.06; H, 3.32; N, 18.42; S, 7.93. Calc. for C54H39N15O3S3 (%): C, 62.23;
H, 3.77; N, 20.16; S, 9.23. MS (MALDI-TOF), m/z: 1042 [M + H]+.
Received: 21st April 2008; Com. 08/3126
– 290 –