110
K. F. Morgan et al.
Letter
Synlett
(12) For cyclopropanes, see: (a) Abramovitch, A.; Fensterbank, L.;
Malacria, M.; Marek, I. Angew. Chem. Int. Ed. 2008, 47, 6865.
(b) Kopp, F.; Sklute, G.; Polborn, K.; Marek, I.; Knochel, P. Org.
Lett. 2005, 7, 3789. (c) Yamada, Y.; Mizuno, M.; Nagamoto, S.;
Satoh, T. Tetrahedron 2009, 65, 10025.
(13) For cyclobutanes, see: (a) Satoh, T.; Kasuya, T.; Ishigaki, M.;
Inumaru, M.; Miyagawa, T.; Nakaya, N.; Sugiyama, S. Synthesis
2011, 397. (b) Ishigaki, M.; Inumaru, M.; Satoh, T. Tetrahedron
Lett. 2011, 52, 5563.
(14) For sulfinyl-metal exchange and Pd-catalysed cross-coupling on
aziridines, see: Hughes, M.; Boultwood, T.; Zeppetelli, G.; Bull, J.
A. J. Org. Chem. 2013, 78, 844.
(15) (a) Rayner, P. J.; Gelardi, G.; O’Brien, P.; Horan, R. A. J.;
Blakemore, D. C. Org. Biomol. Chem. 2014, 12, 3499. (b) Foucoin,
F.; Caupène, C.; Lohier, J. F.; Santos, J. S. D. O.; Perrio, S.;
Metzner, P. Synthesis 2007, 1315.
(16) For deprotonation at C-2 of substituted oxetanes, see: (a) For
phenyl stabilised anion, see: Coppi, D. I.; Salomone, A.; Perna, F.
M.; Capriati, V. Chem. Commun. 2011, 47, 9918. (b) For ketone
stabilised anion, see: Geden, J. V.; Beasley, B. O.; Clarkson, G. J.;
Shipman, M. J. Org. Chem. 2013, 78, 12243. Also see ref 8a.
(17) Optimisation of the reaction parameters included base, number
of equivalents of base, time, temperature and rate of addition.
(18) We were unable to determine the relative stereochemistry of
the diastereoisomeric oxetane products.
(19) Typical Procedures; Procedure A: 2-(2-Chlorobenzene-
sulfinyl)oxetane (2d): A solution of LiHMDS (1.0 M in THF, 0.94
mL, 0.94 mmol) was added dropwise to a solution of sulfoxide
1d (0.30 g, 0.78 mmol) in THF (30 mL) at 0 °C and stirred for 1 h
15 min. The reaction was quenched with sat. aq NH4Cl (20 mL)
and extracted with CH2Cl2 (5 × 15 mL). The combined organics
were dried (MgSO4), filtered and the solvent removed under
reduced pressure. Purification by flash chromatography (40%
EtOAc–hexane) afforded the sulfinyl oxetane as a mixture of
two diastereoisomers 2d-A (12 mg, 6%) followed by 2d-B (62
mg, 37%) both as colourless oils.
OCHH), 3.23–3.31 (m, 1 H, OCH2CHH), 3.04–3.13 (m, 1 H,
OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 136.8 (Cq), 132.1
(Ar–C), 129.9 (Cq), 129.5 (Ar–C), 128.0 (Ar–C), 127.5 (Ar–C), 94.5
(SCHO), 71.5 (OCH2), 22.7 (OCH2CH2). HRMS (ES): m/z [M + H]
calcd for C9H1035ClO2S: 217.0090; found: 217.0104 (Δ 6.5 ppm).
Procedure B; 2-(Oxetan-2-ylsulfinyl)pyridine (2c): A solution
of LDA (1 M in THF, 1.08 mL, 1.08 mmol) was added dropwise to
a solution of sulfoxide 1c (0.26 g, 0.71 mmol) in THF (28 mL) at
–78 °C and stirred for 15 min. The reaction flask was transferred
to a –20 °C bath and stirred for a further 20 min. The reaction
was quenched with sat. aq NH4Cl (50 mL) and extracted with
CH2Cl2 (5 × 30 mL). The combined organics were dried (MgSO4),
filtered and the solvent removed under reduced pressure. Puri-
fication by flash chromatography afforded the oxetane as a
mixture of two diastereoisomers 2c-A (50 mg, 38%) (20%
EtOAc–hexane) followed by 2c-B (68 mg, 51%) (20% CH2Cl2–
Et2O) both as white solids.
Minor Diastereoisomer 2c-A: mp 71–73 °C. Rf 0.10 (20% CH2Cl2–
Et2O). IR (film): 3502, 2970, 2912, 1575, 1449, 1421, 1240, 1088,
1053, 1009, 975, 915, 774, 739 cm–1. 1H NMR (400 MHz, CDCl3):
δ = 8.61 (d, J = 4.7 Hz, 1 H, Py–H), 8.04 (d, J = 7.8 Hz, 1 H, Py–H),
7.94 (ddd, J = 7.8, 7.5, 1.7 Hz, 1 H, Py–H), 7.37 (ddd, J = 7.5, 4.7,
1.1 Hz, 1 H, Py–H), 5.78 (dd, J = 7.9, 5.6 Hz, 1 H, OCHS), 4.82
(ddd, J = 8.8, 6.9, 5.4 Hz, 1 H, OCHH), 4.65 (ddd, J = 8.4, 6.0, 5.4
Hz, 1 H, OCHH), 3.28–3.39 (m, 1 H, OCH2CHH), 3.05–3.17 (m, 1
H, OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 161.0 (Py–Cq),
149.5 (Py–C), 137.7 (Py–C), 124.6 (Py–C), 121.4 (Py–C), 97.2
(OCHS), 71.4 (OCH2), 22.7 (OCH2CH2). HRMS (CI): m/z [M + H]
calcd for C8H10NO2S: 184.0432; found: 184.0430 (Δ 1.1 ppm).
Major diastereoisomer 2c-B: mp 71–73 °C. Rf 0.15 (20% CH2Cl2–
Et2O). IR (film): 3398, 2956, 1573, 1564, 1447, 1418, 1332,
1222, 1113, 1083, 1042, 988, 764, 712 cm–1. 1H NMR (400 MHz,
CDCl3): δ = 8.61–8.63 (d, J = 4.6 Hz, 1 H, Py–H), 7.90–7.98 (m, 2
H, 2 × Py–H), 7.38 (ddd, J = 6.8, 4.8, 2.2 Hz, 1 H, Py–H), 5.82 (dd,
J = 7.4, 5.3 Hz, 1 H, OCHS), 4.80 (ddd, J = 12.0, 6.8, 5.4 Hz, 1 H,
OCHH), 4.69 (ddd, J = 11.4, 6.0, 5.4 Hz, 1 H, OCHH), 3.47–3.58
(m, 1 H, OCH2CHH), 3.12–3.22 (m, 1 H, OCH2CHH). 13C NMR
(100 MHz, CDCl3): δ = 161.0 (Py–Cq), 149.7 (Py–C), 137.9 (Py–C),
124.6 (Py–C), 120.5 (Py–C), 100.0 (OCHS), 71.5 (OCH2), 18.7
(OCH2CH2). HRMS (CI): m/z [M + H] calcd for C8H10NO2S:
184.0432; found: 184.0430 (Δ 1.1 ppm).
Minor Diastereoisomer 2d-A: Rf 0.22 (40% EtOAc–hexane). IR
(film): 2965, 1724, 1573, 1433, 1357, 1248, 1176, 1103, 1026,
914, 815, 752, 660 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.82 (dd,
J = 7.3, 1.8 Hz, 1 H, Ar–H), 7.50 (ddd, J = 8.9, 7.3, 1.3 Hz, 1 H, Ar–
H), 7.44 (ddd, J = 8.9, 7.8, 1.8 Hz, 1 H, Ar–H), 7.39 (dd, J = 7.8, 1.3
Hz, 1 H, Ar–H), 5.79 (dd, J = 7.4, 5.3 Hz, 1 H, OCHS), 4.81 (ddd, J =
8.9, 6.7, 5.3 Hz, 1 H, OCHH), 4.68 (ddd, J = 8.3, 6.1, 5.3 Hz, 1 H,
OCHH), 3.18–3.18 (m, 1 H, OCH2CHH), 2.47–2.56 (m, 1 H,
OCH2CHH). 13C NMR (100 MHz, CDCl3): δ = 136.9 (Cq), 132.2
(Ar–C), 130.3 (Cq), 129.8 (Ar–C), 127.9 (Ar–C), 126.4 (Ar–C), 97.5
(SCHO), 71.5 (OCH2), 18.2 (OCH2CH2). HRMS (ES): m/z [M+H]
calcd for C9H1035ClO2S: 217.0090; found: 217.0104 (Δ 6.5 ppm).
Major Diastereoisomer 2d-B: Rf 0.15 (40% EtOAc–hexane). IR
(film): 2965, 1724, 1573, 1433, 1357, 1248, 1176, 1103, 1026,
914, 815, 752, 660 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.92 (dd,
J = 7.7, 1.7 Hz, 1 H, Ar–H), 7.50 (ddd, J = 9.0, 7.7, 1.3 Hz, 1 H, Ar–
H), 7.43 (ddd, J = 9.0, 7.9, 1.7 Hz, 1 H, Ar–H), 7.36 (dd, J = 7.9, 1.3
Hz, 1 H, Ar–H), 5.75 (dd, J = 7.7, 5.5 Hz, 1 H, OCHS), 4.79 (ddd, J =
8.8, 6.9, 5.2 Hz, 1 H, OCHH), 4.64 (ddd, J = 8.3, 5.9, 5.2 Hz, 1 H,
(20) para-Nitrophenyl substrate 1h could not be isolated due to
instability and therefore was not investigated further.
(21) The alkylsulfinyl oxetanes were unstable to silica gel. Purifica-
tion of 6 was achieved from 2e where only a short plug of silica
gel was required.
(22) (a) Oae, S.; Kawai, T.; Furukawa, N. Tetrahedron Lett. 1984, 25,
69. (b) Oae, S.; Kawai, T.; Furukawa, N.; Iwasaki, F. J. Chem. Soc.,
Perkin Trans. 2 1987, 405. (c) Oae, S.; Furukawa, N. Heteroaro-
matic Sulfoxides and Sulfones: Ligand Exchange and Coupling in
Sulfuranes and Ipso-Substitutions, In Advances In Heterocyclic
Chemistry; Academic Press: San Diego, 1999, 1–63. (d) Oae, S.
Pure Appl. Chem. 1996, 68, 805. (e) Also see: Durst, T.; LeBelle,
M. J.; Van den Elzen, R.; Tin, K.-C. Can. J. Chem. 1974, 52, 761.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 106–110