Q. Liu et al. / Tetrahedron Letters 53 (2012) 3264–3267
3267
Acknowledgments
This work was supported by the National Natural Science Foun-
dation of China (Nos. 20971066, 21021062, 21003130), the Na-
tional Basic Research Program of China (Nos. 2011CB808704,
2011CBA00700), Program for New Century Excellent Talents in
University (No. NCET-08-0272), Grant-in-Aids for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science
and Technology, Japan (No. 22350083 to H.Y.), JST, CREST (to H.Y.).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. O’regan, B.; Grätzel, M. Nature 1991, 353, 737.
2. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.;
Ito, S.; Bessho, T.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
3. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010,
110, 6595.
Figure 4. J–V curves of DSSCs based on OL7–OL9 and N719 under irradiation of
100 mW/cm2 at 1.5AM sunlight condition.
4. Mishra, A.; Fischer, M. K.; Bauerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.
5. Chen, Z. G.; Li, F. Y.; Huang, C. H. Curr. Org. Chem. 2007, 11, 1241.
6. Chen, R. K.; Yang, X. C.; Tian, H. N.; Wang, X. N.; Hagfeldt, A.; Sun, L. C. Chem.
Mater. 2007, 19, 4007.
7. Yao, Q. H.; Shan, L.; Li, F. Y.; Yin, D. D.; Huang, C. H. New J. Chem. 2003, 27, 1277.
8. Paek, S.; Choi, H.; Kim, C.; Cho, N.; So, S.; Song, K.; Nazeeruddin, M. K.; Ko, J.
Chem. Commun. 2011, 47, 2874.
9. Li, C.; Yum, J. H.; Moon, S. J.; Herrmann, A.; Eickemeyer, F.; Pschirer, N. G.; Erk,
P.; Schoeboom, J.; Mullen, K.; Gratzel, M.; Nazeeruddin, M. K. ChemSusChem
2008, 1, 615.
10. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.;
Arakawa, H. New J. Chem. 2003, 27, 783.
11. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy,
P.; Graetzel, M. Chem. Commun. 2008, 5194.
12. Zeng, W. D.; Cao, Y. M.; Bai, Y.; Wang, Y. H.; Shi, Y. S.; Zhang, M.; Wang, F. F.;
Pan, C. Y.; Wang, P. Chem. Mater. 1915, 2010, 22.
13. Zhang, G. L.; Bala, H.; Cheng, Y. M.; Shi, D.; Lv, X. J.; Yu, Q. J.; Wang, P. Chem.
Commun. 2009, 2198.
14. Li, L.; Hao, Y.; Yang, X. C.; Zhao, J. Z.; Tian, H. N.; Teng, C.; Hagfeldt, A.; Sun, L. C.
ChemSusChem 2011, 4, 609.
In the incident photo-to-current conversion efficiency (IPCE)
spectra of these dyes (Fig. 3), OL7 and OL8 showed very similar
spectrum response with highest IPCE value of 85% and 82%, respec-
tively. Their IPCE values were over 70% at the wavelength between
400 and 550 nm and cut off at 700 nm. As a comparison, OL9 has
highest value of 58% and above 50% between 450 and 600 nm.
But it is interesting that the spectrum response of OL9 was ex-
tended to 800 nm, which is similar to that of N719.
The J–V curves of these dyes are shown inFigure 4. From the dark
current we could find that the charge recombination trend follows
the order of OL9 > OL7 > OL8 in these DSSCs. This may explain the
relative poor performance of OL9. Another reason for the lower per-
formance may be the poor solubility.28 Considering the good planar-
ity and
p
conjugation of fluorene and benzo[c]thiophene, it is
stacking which
15. Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E. W. G.; Gratzel, M. Angew.
Chem., Int. Ed. 2010, 49, 6646.
possible that the poor solubility is caused by the
p–p
prevents the efficient electron injection from the dye into the TiO2
conducting band. Structural modification with more space hin-
drance group or using co-adsorbents may improve the performance
of OL9 and the corresponding work is now undergoing.
16. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.;
Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Science 2011, 334, 629.
17. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, S.; De Angelis, F.; Di
Censo, D.; Nazeeruddin, M. K.; Graetzel, M. J. Am. Chem. Soc. 2006, 128, 16701.
18. Choi, H.; Lee, J. K.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 3115.
19. Kim, S.; Choi, H.; Kim, D.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 9206.
20. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Graetzel,
M. Angew. Chem., Int. Ed. 2008, 47, 327.
Conclusions
21. Kim, C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M.-S.; Kang, S. O.; Ko, J. J. Org.
Chem. 2008, 73, 7072.
22. Cho, N.; Choi, H.; Kim, D.; Song, K.; Kang, M.-S.; Kang, S. O.; Ko, J. Tetrahedron
2009, 65, 6236.
23. Ko, S.; Choi, H.; Kang, M.-S.; Hwang, H.; Ji, H.; Kim, J.; Ko, J.; Kang, Y. J. Mater.
Chem. 2010, 20, 2391.
In summary, we have introduced benzo[c]thiophene and its pre-
cursor as
p bridge to bisdimethylfluorenylamino-based push–pull
organic dyes; their spectroscopic and electrochemical properties
have been studied. Fusion with benzene ring on thiophene bridge
24. Liu, Q.; Feng, Q.-Y.; Yamada, H.; Wang, Z.-S.; Ono, N.; You, X.-Z.; Shen, Z. Chem.
25. Shimizu, Y.; Shen, Z.; Ito, S.; Uno, H.; Daube, J.; Ono, N. Tetrahedron Lett. 2002, 43,
8485.
significantly expands
p-conjugation thus red-shift the spectrum
response and greatly stabilized the LUMO level of dyes. Dye-sensi-
tized solar cells fabricated with these dyes are measured and mod-
erate power conversion is obtained compared with that of N719,
suggesting that these dyes may be good candidate for sensitizers.
Further modifications of the dye structure and device optimization
to improve the performance of these dyes are now in progress.
26. Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49.
27. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama,
K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
28. Xu, M.; Li, R.; Pootrakulchote, N.; Shi, D.; Guo, J.; Yi, Z.; Zakeeruddin, S. M.;
Grätzel, M.; Wang, P. J. Phys. Chem. C. 2008, 112, 19770.