Communication
Supporting Information (see footnote on the first page of this
article): Experimental details, characterization data, and copies of
the 1H NMR and 13C NMR spectra for all key intermediates and final
products.
allylation and NBS cyclization strategy, we are able to prepare
4u in 21 % isolated yield from cheap 2-methyl-benzoic acid in
four steps. In this reaction, only 1.1 equiv. NBS was added to
avoid bromination of the aniline ring (Scheme 5).
Acknowledgments
We gratefully acknowledge the National Basic Research Pro-
gram of China (2013CB922101), the National Natural Science
Foundation of China (21271102, 21472086, and 21531004), and
the Natural Science Foundation of Jiangsu Province
(BK20130054).
Keywords: Allylation · C–H activation · Heterocycles ·
Synthetic methods
[1] For related reviews, see: a) G. Ni, Q. Zhang, Z. Zheng, R. Chen, D. Yu, J.
Nat. Prod. 2009, 72, 966–968; b) R. Schobert, G. J. Gordon, Curr. Org.
Chem. 2002, 6, 1181–1196.
[2] a) S. R. Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153–1160; b) J. A.
Marshal, Chem. Rev. 2000, 100, 3163–3186.
[3] Y. Kuinobu, K. Ohta, K. Takai, Chem. Commun. 2011, 47, 10791–10793.
[4] For selected examples, see: a) J. Min, J. Lee, J. Yang, S. Koo, J. Org. Chem.
2003, 68, 7925–7927; b) M. Niggemann, M. J. Meel, Angew. Chem. Int.
Ed. 2010, 49, 3684–3687; Angew. Chem. 2010, 122, 3767.
Scheme 5. The synthesis of 5u. Reagents and conditions: (i) SOCl2, CH2Cl2,
reflux, 4 h; (ii) NEt3, 1 equiv. 2-toluidine, 0–25 °C, 4 h; (iii) 4 mol-% [Cp*RhCl2]2,
2.1 equiv. AgOAc, 2.5 equiv. allyl bromide, Et2O, room temperature, 12 h; (iv)
1.1 equiv. NBS, anhydrous Et2O, 40 °C, 1 h.
[5] J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111,
1846–1913.
Conclusions
[6] For selected examples, see: a) M. D. Levin, F. D. Toste, Angew. Chem. Int.
Ed. 2014, 53, 6211–6215; Angew. Chem. 2014, 126, 6325; b) X. Cui, S.
Wang, Y. Zhang, W. Deng, Q. Qian, H. Gong, Org. Biomol. Chem. 2013,
11, 3094–3097.
[7] For examples, see: a) T. Yao, K. Hirano, T. Satoh, M. Miura, Angew. Chem.
Int. Ed. 2011, 50, 2990–2994; Angew. Chem. 2011, 123, 3046; b) Y. Makida,
H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed. 2012, 51, 4122–4127;
Angew. Chem. 2012, 124, 4198; c) Y. Yu, S. Fan, X. Zhang, Chem. Eur. J.
2012, 18, 14643–14648; d) S. Bae, H. Jang, H. Jung, J. Joo, J. Org. Chem.
2015, 80, 690–697.
We have developed a RhIII-catalyzed allylation of both aroyl-
and acrylamides in commercial solvents, and moderate to good
yields can be obtained at room temperature. Allyl halides are
the best allyl reagents. The reaction can tolerate a broad range
of substituents such as halogens and heterocycles. On the basis
of this straightforward allylation, one-pot domino cycling syn-
thesis of 3,4-dihydroisoquinolin-1(2H)-ones has also been
achieved.
[8] a) Y. Zhang, E. Skucas, M. J. Krische, Org. Lett. 2009, 11, 4248–4250; b) R.
Zeng, C. Fu, S. Ma, J. Am. Chem. Soc. 2012, 134, 9597–9600; c) B. Ye, N.
Cramer, J. Am. Chem. Soc. 2013, 135, 636–639.
Experimental Section
[9] Y. Aihara, N. Chatani, J. Am. Chem. Soc. 2013, 135, 5308–5311.
[10] X. Cong, Y. Li, Y. Wei, X. Zeng, Org. Lett. 2014, 16, 3926–3929.
[11] S. Oi, Y. Tanaka, Y. Inoue, Organometallics 2006, 25, 4773–4778.
[12] For selected reviews, see: a) S. Song, X. Li, Acc. Chem. Res. 2015, 48,
1007–1020; b) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010,
110, 624–655; c) B. Li, P. H. Dixneuf, Chem. Soc. Rev. 2013, 42, 5744–5767;
d) S. I. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4, 886–896; e) C. S.
Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292.
[13] Allyl carbonates, see: a) H. Wang, N. Schröder, F. Glorius, Angew. Chem.
Int. Ed. 2013, 52, 5386–5389; Angew. Chem. 2013, 125, 5495; b) D. Yu, T.
Gensch, F. de Azambuja, S. Vásquez-Céspedes, F. Glorius, J. Am. Chem.
Soc. 2014, 136, 17722–17725; c) J. Park, N. K. Mishra, S. Sharma, S. Han,
Y. Shin, T. Jeong, J. Oh, J. Kwak, Y. Jung, I. Kim, J. Org. Chem. 2015, 80,
1818–1827; d) T. Gensch, S. Vásquez-Céspedes, D. Yu, F. Glorius, Org. Lett.
2015, 17, 3714–3717; e) S. Mei, N. Wang, Q. Ouyang, Y. Wei, Chem. Com-
mun. 2015, 51, 2980–2983; f) S. Zhang, J. Wu, Y. Lao, X. Liu, Y. Liu, W. Lv,
D. Tan, Y. Zeng, H. Wang, Org. Lett. 2014, 16, 6412–6415.
Typical Procedure for Allylation of Amides: A 25 mL flask was
charged with substrate 1a–t (0.40 mmol, 1.0 equiv.), [Cp*RhCl2]2
(9.9 mg, 0.016 mmol, 4 mol-%), AgOAc (140.2 mg, 0.84 mmol,
2.1 equiv.), diethyl ether (10 mL), and 2a (84 μL, 1 mmol, 2.5 equiv.)
in air. The flask was capped, and the reaction mixture was stirred
for 12 h at room temperature. Then CH2Cl2 (2 mL) was added into
the flask to dissolve potential organic precipitates. The mixture was
filtered, and the precipitate was washed with CH2Cl2 (2 mL × 3).
The filtrate was then concentrated in a rotary evaporator under
reduced pressure, and the resulting residue was purified by silica
gel column chromatography, using EtOAc/hexane as the eluent.
Typical Procedure for Preparing Heterocycles 4a, 4g, 4h–l, 4o,
4p, 4r, 4t Based on the Allylation: After the general procedure for
allylation (0.4 mmol), CH2Cl2 (2 mL) was added into the flask to
dissolve potential organic precipitates. The mixture was filtered, and
the precipitate was washed with CH2Cl2 (2 mL × 3). The filtrate was
concentrated in a rotary evaporator under reduced pressure, and
NBS (249.2 mg, 1.4 mmol, 3.5 equiv.) and solvent (5 mL) were added
to the flask. After that, the flask was capped and submerged into a
preheated 40 °C oil bath for 1 h. After cooling to room temperature,
the solvent was removed under reduced pressure. The resulting
residue was purified by silica gel column chromatography using
EtOAc/hexane (1:30) as the eluent.
[14] Allyl ethers, see: S. Asako, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2013,
135, 17755–17757.
[15] Allyl esters, see: a) C. Feng, D. Feng, T. P. Loh, Chem. Commun. 2015, 51,
342–345; b) A. S. Tsai, M. Brasse, R. G. Bergman, J. A. Ellman, Org. Lett.
2011, 13, 540–542; c) R. Manikandan, P. Madasamy, M. Jeganmohan,
Chem. Eur. J. 2015, 21, 13934–13938; d) S. Mei, N. Wang, Q. Ouyang, Y.
Wei, Chem. Commun. 2015, 51, 2980–2983.
[16] Y. Suzuki, B. Sun, K. Sakata, T. Yoshino, S. Matsunaga, M. Kanai, Angew.
Chem. Int. Ed. 2015, 54, 9944–9947; Angew. Chem. 2015, 127, 10082–
10085.
Eur. J. Org. Chem. 2016, 1255–1259
1258
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim