3156
P. Chen et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3153–3156
improve in vitro potency against T-cell proliferation.
Table 2 illustrates the results from some of the repre-
sentative analogues prepared in this series.
In summary, we have described a promising series of
anilinoimidazoquinoxalines, represented by 12y and 13,
with excellent enzyme activity (IC50 <5 nM). In parti-
cular, significant improvement of activity against T-cell
proliferation (IC50 <200 nM) was achieved from the
initial lead, compound 2, by incorporation of polar and
weakly basic amine-bearing side chains into the 7-posi-
tion of the fused phenyl ring of the imidazo-quinoxaline
core. Full characterization of these compounds in vivo
in pharmacokinetic and pharmacodynamic models will
be disclosed in due course.
Substitution with simple amines at either the 6- or 7-
position initially proved to be ineffective in achieving
this goal (11q, 12a–c, 11t, and 12n). Almost all analogues
displayed significantly reduced T-cell activity, even
though they all showed comparable inhibitory activity
against Lck as 2. Replacement of the simple amine of
11q with a side chain containing a basic amine moiety
resulted in a modest improvement of cell activity (12d).
Compounds 12d, 12f, and 12g are essentially equally
potent to 2 when examined for inhibition of T-cell pro-
liferation. A significant improvement in cellular activity
resulted from substitution at the 6-position with the bulky
secondary amines. All the piperazine substituted ana-
logues displayed excellent cellular potency (12h–l), with
a nearly 3-fold improvement for 12i over 2.
Acknowledgements
We would like to thank Dr. Bang-Chi Chen and Mr.
Mark S. Bednarz for providing assistance in the pre-
paration of key intermediate for the synthesis of ana-
logue 2, and the Discovery Analytical Science Group
for all the analytical support.
Substitution with amines at the 7-position displayed a
similar trend as that observed for the 6-position series,
although the magnitude of the improvement was less
significant. Overall, these analogues appear to be less
potent in the T-cell proliferation assay than their 6-
substituted counterparts (12g vs 12q, 12h vs 12r, 12i vs
12s, and 12l vs 12t).
References and Notes
1. (a) Molina, T. J.; Kishihara, K.; Siderovski, D. P.; van
Ewijk, W.; Narendran, A.; Timms, E.; Wakeham, A.; Paige,
C. J.; Hartman, K.-U.; Veillette, A.; Davison, D.; Mark, T. W.
Nature 1992, 357, 161. (b) Levin, D. S.; Anderson, S. J.; For-
bushm, K. A.; Perlmutter, R. M. EMBO J. 1993, 12, 1671.
2. (a) Straus, D. B.; Weiss, A. Cell 1992, 70, 585. (b) Chan,
A. C.; Desai, D. M.; Weiss, A. C. Annu. Rev. Immunol. 1994, 12,
555. (c) Weiss, A.; Littman, D. Cell 1994, 76, 263. (d) Hanke,
J. H.; Gardner, J. P.; Dow, R. L.; Changelian, P. S.; Brissette,
W. H.; Weringer, E. J.; Pollok, B. A.; Connelly, P. A. J. Biol.
Chem. 1996, 271, 695. (e) Van Oers, N. S. C.; Lowin-Kropt,
B.; Finlay, D.; Connolly, K.; Weiss, A. Immunity 1996, 5, 429.
3. Chen, P.; Norris, D.; Iwanowicz, E. J.; Spergel, S. H.; Lin,
J.; Gu, H. H.; Shen, Z.; Wityak, J.; Pang, S.; De Fex, H. F.;
Pitt, S.; Doweyko, A. M.; Bassolino, D. A.; Roberge, J. Y.;
Poss, Mi. A.; Chen, B.-C.; Schieven, G. L.; Barrish, J. C.
Bioorg. Med. Chem. Lett. 2002, 12, 1361.
We also explored the effect of incorporation of a second
small, electron-donating group into the fused phenyl
ring of the imidazoquinoxaline core. Interestingly, the 6-
amino-7-methoxy di-substituted analogues were sig-
nificantly less potent (6-fold) than their corresponding
mono-amino-substituted analogues (12u vs 12d and 12v
vs 12l), whereas their regio-isomers, the 6-methoxy-7-
amino analogues (12w–z) showed similar or better
enzyme potency than the mono-amino substituted
counterparts. Most significantly, compound 12y dis-
played potent cellular activity (IC50 <200 nM!) in the
T-cell proliferation assay. Compound 13, prepared
according to a similar procedures outlined in Scheme 2,
represents the most cell potent analogue from this ser-
ies, as illustrated in Figure 2.
4. Chen, P.; Barrish, J. C.; Iwanowicz, E.; Lin, J.; Bednarz,
M. S.; Chen, B.-C. Tetrahedron Lett. 2001, 42, 4293.
5. Norris, D.; Chen, P.; Barrish, J. C.; Das, J.; Moquin, R. V.;
Chen, B. C.; Guo, P. Tetrahedron Lett. 2001, 42, 4297.
6. (a) Palmer, B. D.; Trumpp-Kallmeyer, S.; Fry, D. W.;
Nelson, J. M.; Showalter, H. H. D.; Denny, W. A. J. Med.
Chem. 1997, 40, 1519. (b) Thompson, A. M.; Murray, D. K.;
Elliott, W. L.; Fry, D. W.; Nelson, J. A.; Showalter, H. H. D.;
Roberts, B. J.; Vincent, P. W.; Denny, W. A. J. Med. Chem.
1997, 40, 3915. (c) Rewcastle, G. W.; Murray, D. K.; Elliott,
W. L.; Fry, D. W.; Howard, C. T.; Nelson, J. M.; Roberts,
B. J.; Vincent, P. W.; Showalter, H. H. D.; Winters, R. T.;
Denny, W. A. J. Med. Chem. 1998, 41, 742. (d) Hennequin,
L. F.; Stokes, E. S. E.; Thomas, A. P.; Johnstone, C.; Ple,
P. A.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Kendrew, J.;
Curwen, J. O. J. Med. Chem. 2002, 45, 1300.
Figure 2. Activity for imidazoquinoxaline 2 and 12.