A. Dondoni et al. / Tetrahedron Letters 42 (2001) 4495–4497
4497
reactions employing two complex and bulky partners
were rather modest (Table 1), it is quite rewarding that
the levels of diastereoselectivity were much higher than
in the above more simple cases. Evidently the two sugar
components match quite well in the creation of the
DHPM C4 stereocenter with a preferred configuration.
Hence, while the vast majority of examples of Biginelli
reaction involves the use of achiral reagents and enan-
tiomerically pure products have been obtained by
chemical or enzymatic resolution of racemic mixtures,16
the results of the present study indicate a viable route
toward the asymmetric synthesis of the DHPM ring
system, a prerequisite for the development of useful
drugs having this structural motif.17
reaction. See: (a) Ferna`ndez, M. V.; Herrera, F. J. L.;
Cobos, T. L. Heterocycles 1988, 27, 2133; (b) Ferna`ndez,
M. V.; Herrera, F. J. L.; Cobos, T. L. Heterocycles 1986,
24, 679; (c) Sastre, J. A. L.; Molina, J. M. An. Quim.
1978, 74, 353.
8. (a) Dondoni, A. Pure Appl. Chem. 2000, 72, 1577; (b)
Dondoni, A.; Scherrmann, M.-C. J. Org. Chem. 1994, 59,
6404.
9. It has to be noted that the b-D-configured formyl C-ribo-
furanoside 2 was erroneously reported (Ref. 8b) to be the
a-isomer. For a revision, see: Dondoni, A.; Formaglio,
P.; Marra, A.; Massi, A. Tetrahedron, submitted.
10. Dhavale, D. D.; Bhujbal, N. N.; Joshi, P.; Desai, S. G.
Carbohydr. Res. 1994, 263, 303. 3: [h]2D0=+22 (c=0.9,
CHCl3); 4: [h]2D0=+81 (c=0.6, CHCl3).
In conclusion, it appears to be demonstrated that the
three-component Biginelli reaction can be applied to
the synthesis of different mono- and bis-C-glycosylated
DHPMs. Given the availability of various sugar alde-
hydes and keto esters, the access to a combinatorial
library of glycosylated Biginelli products with a wide
range of structural and stereochemical elements of
diversity for an extensive exploration of biological
properties now becomes of interest.
11. The use of catalytic CuCl as described in Ref. 3c afforded
the Biginelli product in much lower yield (ca. 30%). It is
,
likely that the presence of powdered 4 A molecular sieves,
serving as acid sponge, interfered with the action of the
heterogeneous promoter.
12. 5a (major): [h]2D0=−101 (c=1.2, CHCl3). 5a (minor):
[h]2D0=+30 (c=0.9, CHCl3). 6a (major): mp 147–148°C
(from isopropyl ether–EtOAc); [h]2D0=−65 (c=0.3,
CHCl3). 6a (minor): [h]2D0=+41 (c=1.2, CHCl3). 7a
(major): [h]2D0=+73 (c=0.9, CHCl3). 7a (minor): [h]2D0=
−3 (c=0.3, CHCl3). 8a (major): [h]2D0=+139 (c=1.6,
CHCl3). 8a (minor): [h]2D0=+25 (c=0.9, CHCl3). 9a
(major): [h]2D0=−62 (c=1.1, CHCl3). 9a (minor): [h]2D0=
−10 (c=0.3, CHCl3). 10a (major): [h]2D0=+6 (c=1.0,
CHCl3). 10a (minor): [h]2D0=+75 (c=0.4, CHCl3).
13. Only the major stereoisomers of C-glycosyl DHPMs
5b–10b were isolated and characterized.
Acknowledgements
We gratefully thank the University of Ferrara for finan-
cial support.
14. 5b (major): [h]2D0=−117 (c=0.9, MeOH); MALDI-TOF
MS: 347.0 (M++H), 353.5 (M++Li), 369.5 (M++Na),
385.8 (M++K). 6b (major): mp 264–266°C (from H2O);
[h]2D0=−148 (c=0.2, H2O); MALDI-TOF MS: 340.0 (M+
+Na), 356.0 (M++K). 7b (major): [h]2D0=+63 (c=0.4,
MeOH); MALDI-TOF MS: 409.6 (M++H), 415.6 (M++
Li), 431.7 (M++Na), 448.3 (M++K). 8b (major): [h]2D0=
+59 (c=1.5, MeOH); MALDI-TOF MS: 379.8 (M++H),
386.1 (M++Li), 402.1 (M++Na), 418.2 (M++K). 9b
(major): [h]2D0=−44 (c=0.7, MeOH); MALDI-TOF MS:
471.8 (M++Li), 487.7 (M++Na), 503.9 (M++K). 10b
(major): [h]2D0=−73 (c=1.3, MeOH); MALDI-TOF MS:
441.8 (M++Li), 458.6 (M++Na).
15. (a) Hunziker, J.; Leumann, C. In Modern Synthetic
Methods 1995; Ernst, B.; Leumann, C., Eds.; VCH: Basel,
1995; p. 333; (b) Wilson, L. W.; Hager, M. W.; El-Kat-
tan, Y. A.; Liotta, D. C. Synthesis 1995, 1465; (c)
Nucleosides and Nucleotides as Antitumor and Antiviral
Agents; Chu, C. K.; Baker, D. C., Eds.; Plenum Press:
New York, 1993; (d) Huryn, D. M.; Okabe, M. Chem.
Rev. 1992, 92, 1745; (e) Perigaud, C.; Gosselin, G.;
Imbach, J.-L. Nucleosides Nucleotides 1992, 11, 903.
16. Schnell, B.; Strauss, U. T.; Verdino, P.; Faber, K.;
Kappe, C. O. Tetrahedron: Asymmetry 2000, 11, 1449.
17. Rovnyak, G. C.; Kimbal, S. D.; Beyer, B.; Cucinotta, G.;
DiMarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.;
McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem.
1995, 38, 119.
References
1. For a recent review, see: Kappe, C. O. Acc. Chem. Res.
2000, 33, 879.
2. (a) Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49;
(b) Kappe, C. O.; Falsone, S. F.; Fabian, W. M. F.;
Belaj, F. Heterocycles 1999, 51, 77; (c) McDonald, A. I.;
Overman, L. E. J. Org. Chem. 1999, 64, 1520.
3. (a) Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000,
65, 6270; (b) Ma, Y.; Qian, C.; Wang, L.; Yang, M. J.
Org. Chem. 2000, 65, 3864; (c) Hu, E. H.; Sidler, D. R.;
Dolling, U. H. J. Org. Chem. 1998, 63, 3454.
4. Stadler, A.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 2
2000, 1363.
5. For an updated list of leading references on this topic,
see: Jauk, B.; Belaj, F.; Kappe, C. O. J. Chem. Soc.,
Perkin Trans 1 1999, 307.
6. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D.
M.; Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med.
Chem. 1991, 34, 806 and references cited therein; (b)
Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D.
M.; Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.;
Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med.
Chem. 1990, 33, 2629.
7. We are aware of a few reports dealing with the use of
rather simple sugar aldehydes (2,3-O-isopropylidene-
glyceraldehyde, 2,4-O-ethylidene- -threose and -ery-
D-
D
D
throse, 2,5-anhydro-aldehydo-
D
-xylose) in the Biginelli
.