Paper
RSC Advances
T.-T. Wang, Y.-J. Wang and S.-K. Tian, Chem. Commun.,
2014, 50, 2111.
8 F. Luo, C. Pan, L. Li, F. Chen and J. Cheng, Chem. Commun.,
2011, 47, 5304.
9 T. Hostier, V. Ferey, D. G. Pardo and J. Cossy, Org. Lett., 2015,
17, 3898.
10 Q. Wu, D. Zhao, X. Qin, J. Lana and J. You, Chem. Commun.,
2011, 47, 9188.
11 D. Wang, S. Guo, R. Zhang, S. Lin and Z. Yan, RSC Adv., 2016,
6, 54377.
Scheme 4 Proposed mechanism.
12 X. Yu, Q. Wu, H. Wan, Z. Xu, X. Xu and D. Wang, RSC Adv.,
2016, 6, 62298.
13 Y. Wang, X. Zhang, H. Liu, H. Chen and D. Huang, Org.
Chem. Front., 2017, 4, 31.
14 (a) Z. Rappoport and I. Marek, The Chemistry of Organozinc
Compounds: R-Zn, Wiley, Chichester, UK, 2006; (b)
P. Knochel and P. Jones, Organozinc Reagents: A Practical
Approach, Oxford University Press, Oxford, 1999; (c)
E. Erdik, Organozinc Reagents in Organic Synthesis, CRC,
New York, 1996; (d) A. D. Dilman and V. V. Levin,
Tetrahedron Lett., 2016, 57, 3986.
Transmetalation of RZnX with CuI gave the organocopper
reagents RCu35 which underwent a homolytic dissociation to
generate a Rc radical.36 It should be noted here that Rc radical
can also be generated from organozinc reagents in presence of
trace amount of oxygen.37 Disulde (II) captured Rc radical to
form thioether (III). Meanwhile, a thiyl radical (IV) was produced
which either underwent homocoupling to regenerate the disul-
de (II) or was captured by another Rc radical to give thioether
(III).
15 I. M. Yonova, C. A. Osborne, N. S. Morrissette and E. R. Jarvo,
J. Org. Chem., 2014, 79, 1947.
Conclusion
In summary, we have developed an efficient and practical
method for the preparation of aromatic suldes based on CuI
promoted reaction of organozinc reagents with aromatic
sulfonyl chlorides. This reaction initiated via a alkyl/aryl radical
generated from organozinc reagents rather than thiyl radical
generated from diaryl disuldes. A plausible reaction mecha-
nism has been given on the basis of the control experiments.
16 (a) B. N. Rocke, K. B. Bahnck, M. Herr, S. Lavergne,
V. Mascitti, C. Perreault, J. Polivkova and A. Shavnya, Org.
Lett., 2014, 16, 154; (b) N. Margraf and G. Manolikakes,
J. Org. Chem., 2015, 80, 2582.
¨
17 Y. Fu, W. Zhu, X. Zhao, H. Hugel, Z. Wu, Y. Su, Z. Du,
D. Huang and Y. Hu, Org. Biomol. Chem., 2014, 12, 4295.
¨
18 (a) Y. Fu, Y. Liu, Y. Chen, H. M. Hugel, M. Wang, D. Huang
and Y. Hu, Org. Biomol. Chem., 2012, 10, 7669; (b) Y. Fu,
X. Hu, Y. Chen, Y. Yang, H. Hou and Y. Hu, Synthesis,
Acknowledgements
¨
2012, 44, 1030; (c) Y. Fu, X.-L. Zhao, H. Hugel, B. Hou,
The authors are grateful for nancial support from the National
D. Huang and Z. Du, Curr. Org. Chem., 2015, 19, 2324; (d)
Natural Science Foundation of China (No. 21262030, 20962017).
¨
Y. Fu, X. L. Zhao, H. Hugel, D. Huang, Z. Du, K. Wang and
Y. Hu, Org. Biomol. Chem., 2016, 14, 9720.
19 (a) G. W. Kabalka, M. S. Reddy and M.-L. Yao, Tetrahedron
Lett., 2009, 50, 7340; (b) D. Wan, Y. Yang, X. Liu, M. Li,
S. Zhao and J. You, Eur. J. Org. Chem., 2016, 55.
References and Notes
1 For recent reviews: (a) A. Ghaderi, Tetrahedron, 2016, 72,
4758; (b) X.-Q. Pan, J.-P. Zou, W.-B. Yi and W. Zhang, 20 K. Kobayashi and Y. Kondo, Org. Lett., 2009, 11, 2035.
Tetrahedron, 2015, 71, 7481; (c) C. Shen, P. Zhang, Q. Sun, 21 (a) H. Wuyts, Bull. Soc. Chim. Fr., 1906, 166; (b) A. J. Parker
S. Bai, T. S. Andy Hor and X. Liu, Chem. Soc. Rev., 2015, 44,
291; (d) X. Zhu and S. Chiba, Chem. Soc. Rev., 2016, 45, 4504.
2 J. T. Reeves, K. Camara, Z. S. Han, Y. Xu, H. Lee, C. A. Busacca
and C. H. Senanayake, Org. Lett., 2014, 16, 1196.
and N. Kharasch, Chem. Rev., 1959, 59, 583; (c)
S. Munavalli, D. I. Rossman, D. K. Rohrbaugh and
C. P. Ferguson, J. Fluorine Chem., 1993, 61, 147.
22 S. Munavalli, D. I. Rossman, D. K. Rohrbaugh and
C. P. Ferguson, J. Fluorine Chem., 1993, 61, 155.
3 D. J. C. Prasad and G. Sekar, Org. Lett., 2011, 13, 1008.
4 (a) Z. Qiao, J. Wei and X. Jiang, Org. Lett., 2014, 16, 1212; (b) 23 P.-S. Luo, M. Yu, R.-Y. Tang, P. Zhong and J.-H. Li,
X.-Q. Chu, X.-P. Xu and S.-J. Ji, Chem.–Eur. J., 2016, 22, 14181; Tetrahedron Lett., 2009, 50, 1066.
(c) A. Rostami, A. Rostami and A. Ghaderi, J. Org. Chem., 24 S. Yasuike, M. Nishioka, N. Kakusawa and J. Kurita,
2015, 80, 8694.
Tetrahedron Lett., 2011, 52, 6403.
5 M. Cai, R. Xiao, T. Yan and H. Zhao, J. Organomet. Chem., 25 D. I. Rossman, D. K. Rohrbaugh, C. Parker Ferguson and
2014, 749, 55.
L. J. Szafraniec, J. Fluorine Chem., 1992, 59, 91.
6 (a) P. Zhao, H. Yin, H. Gao and C. Xi, J. Org. Chem., 2013, 78, 26 Y. Matano, T. Miyamatsu and H. Suzuki, Organometallics,
5001; (b) H. Firouzabadi, N. Iranpoor and A. Samadi,
Tetrahedron Lett., 2014, 55, 1212.
7 (a) N. Singh, R. Singh, D. S. Raghuvanshi and K. Nand Singh,
Org. Lett., 2013, 15, 5874; (b) F.-L. Yang, F.-X. Wang,
1996, 15, 1951.
27 A. S.-Y. Lee, Y.-T. Chang, S.-F. Chu and K.-W. Tsao,
Tetrahedron Lett., 2006, 47, 7085.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 6018–6022 | 6021