compounds, how the distance between phosphorus donors is
critical in determining if the rings can be linked to give extended
structures.
We thank the NSERC (Canada) for financial support and for
a scholarship to M.-C. B. and R. J. P. thanks the Government of
Canada for a Canada Research Chair. We thank Dr M. C.
Jennings for X-ray data collection.
Notes and references
† Selected data: for 1 and 2: d(31P) in CD3OD: 1a, 38.3; 1b, 41.1; 1c, 44.3;
1d, 45.6; 2, 44.7. For 3a: d(13CN) 155.7; d(31P) 34.9. For 3b: d(13CN) 155.9
[J(PC) 132 Hz]; d(31P) 33.5. For 3c: d(13CN) 157.2 [J(PC) 123 Hz]; d(31P)
31.9. For 3d: d(13CN) 157.7 [J(PC) 124 Hz]; d(31P) 35.8.
Complexes were prepared in methanol solution, NMR data were obtained
in CD2Cl2/CD3OD solution, and crystals were grown by slow diffusion of
pentane into these solutions.
‡ Crystal data: for 1c·2CH2Cl2: C60H56Au2Cl4F6O4P4, M
= 1586.61,
orthorhombic, space group Pna21, a = 22.7641(8), b = 13.3249(3), c =
19.5994(8) Å, V = 5945.1(3) Å3, Z = 4, R1 = 0.0739 and wR2 = 0.1787
for 12645 reflections with I > 2s(I) at 150 K.
For 2: C30H28AuF3O2P2, M = 736.43, monoclinic, space group Pc, a =
6.7570(1), b = 11.7756(3), c = 20.3694(5) Å, b = 93.629(1)°, V =
1617.50(6) Å3, Z = 2, R1 = 0.0752 and wR2 = 0.2057 for 8807 reflections
with I > 2s(I) at 300 K.
Scheme 2 P = PPh2.
For 3a: C27H22Au2N2P2, M = 830.34, monoclinic, space group C2/c, a
= 22.039(1), b = 7.4488(3), c = 18.3838(6) Å, b = 122.193(2)°, V =
2554.0(2) Å3, Z = 4, R1 = 0.0364 and wR2 = 0.0883 for 3723 reflections
with I > 2s(I) at 200 K.
For 3b: C28H24Au2N2P2, M = 844.36, monoclinic, space group P21/n, a
= 12.597(1), b = 11.4020(9), c = 19.258(1) Å, b = 108.34(6)°, V =
2625.5(4) Å3, Z = 4, R1 = 0.0641 and wR2 = 0.1676 for 4262 reflections
with I > 2s(I) at 298 K.
For 4: C58H52Au4N4P4, M = 1716.78, monoclinic, space group P21/n, a
= 26.860(1), b = 17.425(1), c = 28.026(1) Å, b = 96.439(4)°, V =
13034(1) Å3, Z = 10, R1 = 0.1357 and wR2 = 0.3699 for 15165 reflections
with I > 2s(I) at 200 K.
For 5: C62H60Au4N4P4, M = 1772.89, monoclinic, space group P21/c, a
= 13.7149(3), b = 25.056(1), c = 19.4449(8) Å, b = 97.46(2)°, V =
6625.5(4) Å3, Z = 5, R1 = 0.0561 and wR2 = 0.1633 for 13231 reflections
with I > 2s(I) at 296 K.
b103020p/ for crystallographic data in CIF or other electronic format.
1 Gold: Progress in Chemistry, Biochemistry and Technology, ed. H.
Schmidbaur, Wiley, New York, 1999; M. C. Brandys, M. C. Jennings
and R. J. Puddephatt, J. Chem. Soc., Dalton Trans., 2000, 4601; R. J.
Puddephatt, Chem. Commun., 1998, 1055; W. E. Van Zyl, R. J. Staples
and J. P. Fackler Jr., Inorg. Chem. Commun., 1998, 1, 51; D. Perrault, M.
Drouin, A. Michel and P. D. Harvey, Inorg. Chem., 1991, 30, 2.
2 L. Hao, R. J. Lachicotte, H. J. Gysling and R. Eisenberg, Inorg. Chem.,
1999, 38, 4616; V. W. W. Yam and K. K. W. Lo, Chem. Soc. Rev., 1999,
28, 323; B. C. Tzeng, K. K. Cheung and C. M. Che, Chem. Commun.,
1996, 1689; S. J. Berners-Price, L. A. Colqhoun, P. C. Healey, K. A.
Byriel and J. V. Hanna, J. Chem. Soc., Dalton Trans., 1992, 3357.
3 S. S. Pathameni and G. R. Desiraju, J. Chem. Soc., Dalton Trans., 1993,
319; P. M. Van Calcar, M. M. Olmstead and A. L. Balch, Inorg. Chem.,
1997, 36, 5231; M. J. Irwin, G. Jia, N. C. Payne and R. J. Puddephatt,
Organometallics., 1996, 15, 51; M. J. Irwin, L. M. Muir, K. W. Muir and
R. J. Puddephatt, Chem. Commun., 1997, 219.
4 A. Burini, R. Galassi, B. R. Pietroni and G. Rafaini, J. Organomet.
Chem., 1996, 519, 161; S. Al-Baker, W. E. Hill and C. A. McAuliffe,
J. Chem. Soc., Dalton Trans., 1985, 2655; W. P. Schaeffer, R. E. Marsh,
T. M. McCleskey and H. B. Gray, Acta Crystallogr., Sect. C, 1991, 47,
2553; D. Perrault, M. Drouin, A. Michel, V. M. Miskowski, W. P.
Schaefer and P. D. Harvey, Inorg. Chem., 1992, 31, 695; M. C. Gimeno
and A. Laguna, Chem. Rev., 1997, 511; A. Bayler, A. Schier and H.
Schmidbaur, Inorg. Chem., 1998, 37, 4353; H.-R. C. Jaw, M. M. Savas,
R. D. Rogers and W. R. Mason, Inorg. Chem., 1989, 28, 1028; A.
Houlton, D. M. P. Mingos, D. M. Murphy, D. J. Williams, L. T. Phang
and T. S. A. Hor, J. Chem. Soc., Dalton Trans., 1993, 3629; M. N. I.
Khan, C. King, D. D. Heinrich, J. P. Fackler Jr. and L. C. Porter, Inorg.
Chem., 1989, 28, 2150.
Fig. 2 Structures of the linked ring complex cations in (a) complex 4 and (b)
complex 5. The parameters corresponding to aurophilic attractions are: for
complex 4, Au(1)–Au(5) 3.059(3) Å, Au(2)–Au(5) 3.034(3) Å; Au(1)–
Au(5)–Au(2) 172.1(1)°. For complex 5, Au(1)–Au(4) 2.9906(8), Au(2)–
Au(4) 3.0665(8) Å, Au(1)–Au(4)–Au(2) 165.26(3)°.
Au…Au bonding and so the pleated-chain polymeric structure
[{Au2[m-Ph2P(CH2)5PPh2]2}2{Au(CN)2}2]x2x+ results. By in-
spection of Fig. 2, it is immediately clear that the structure
observed for 5 would not be possible for 4 because the
transannular Au…Au distance is too short to allow both gold
atoms to be linked to approximately collinear [Au(CN)2]2
units. Phenyl–phenyl repulsions prevent bridging in other ways
to link units of 1a, 1b or 1c.
The complexes 4, 2 and 5, as the dicyanoaurate salts, give
rather similar solid state emission spectra, with maxima at 419,
414 and 411 nm, respectively. This indicates that the extended
structures present in 2 (n = 4) and 5 (n = 5) do not greatly
affect the photophysical properties of the complexes, when
compared to the more limited association in 4.
The ability to control the self-assembly of extended structures
is becoming increasingly important. This article shows how
conformational differences in simple, commonly used diphos-
phine ligands can be used to control whether ring or polymeric
structures will be formed in gold( ) complexes and, for the ring
I
Chem. Commun., 2001, 1280–1281
1281