Published on Web 01/21/2004
Elucidation of the Electron Transfer Reduction Mechanism of
Anthracene Endoperoxides
Robert L. Donkers† and Mark S. Workentin*
Contribution from the Department of Chemistry, The UniVersity of Western Ontario,
London, ON, Canada, N6A 5B7
Received April 28, 2003; E-mail: mworkent@uwo.ca
Abstract: The homogeneous and heterogeneous reductions of the endoperoxides 9,10-diphenyl-9,10-
epidioxyanthracene (DPA-O2) and 9,10-dimethyl-9,10-epidioxyanthracene (DMA-O2) were investigated, and
they were found to undergo a dissociative electron-transfer reduction of the O-O bond to yield a distonic
radical anion, with no evidence for C-O bond dissociation. A number of thermochemical parameters for
each were determined using Save´ant’s model for dissociative electron transfer (ET), including E°, ∆Gqo,
and bond dissociation energies. The products of the ET are dependent on the mode of reduction, namely
heterogeneous or homogeneous, and on the electrode potential or standard potential of the homogeneous
donor, respectively. The dissociative reduction of DMA-O2 under heterogeneous and homogeneous
conditions yields the corresponding 9,10-dihydroxyanthracene DMA-(OH)2, quantitatively, in an overall two-
electron process. In the case of DPA-O2, ET reduction also yields the corresponding 9,10-dihydroxyan-
thracene DPA-(OH)2 from reduction of the distonic radical anion, but in competition with this reduction, an
O-neophyl-type rearrangement occurs that generates a carbon radical with a minimum rate constant of
5.9 × 1010 s-1. In the presence of a sufficiently reducing medium, the carbon-centered radical is reduced
(E° ) -0.85 V vs SCE) and ultimately yields 9-phenoxy-10-phenyl anthracene (PPA). The observation of
this product is remarkable. In the heterogeneous ET, the yield of DPA-(OH)2/PPA is 97:3 and allows an
estimate of the rate constant for ET to the distonic radical anion. In homogeneous reductions, the O-neophyl
rearrangement is quantitative, but the yield of PPA depends on the redox properties of the donor. A unified
mechanism of reduction of DPA-O2 is presented to account for these observations.
Introduction
decompose thermally by two distinct reaction pathways. One
pathway regenerates the parent aromatic hydrocarbon and
oxygen in either the singlet or triplet state from a formal
cycloreversion reaction, and the other generates products formed
via homolytic cleavage of the O-O bond (Scheme 1).6,12,23-40
Anthracene endoperoxides exhibit interesting thermal and
photochemical properties.1-3 Their potential for reversible
oxygen storage and as a chemical source of singlet oxygen, 1O2
(1∆g), a species responsible for causing physiological damage,
has made these compounds the subject of many fundamental
investigations.4-23 Typically, anthracenyl-type endoperoxides
(15) Jesse, J.; Comes, F. J. J. Phys. Chem. 1991, 95, 1311-1315.
(16) Jesse, J.; Markert, R.; Comes, F. J.; Schmidt, R.; Brauer, H.-D. Chem. Phys.
Lett. 1990, 166, 95-100.
(17) Jesse, J.; Comes, F. J.; Schmidt, R.; Brauer, H.-D. Chem. Phys. Lett. 1989,
160, 8-12.
† Current address: Department of Physical Chemistry, University of
Padova, via Loredan 2, 35131 Padova, Italy.
(1) Clennan, E. L.; Foote, C. S. In Organic Peroxides; Ando, W., Ed.; John
Wiley & Sons: Chichester, England, 1992; pp 225-318.
(2) ActiVe Oxygen in Chemistry; Foote, C. S., Valentine, J. S., Greenberg, A.,
Liebman, J. F., Eds.; Blackie Academic and Professional: New York, 1995;
Vol. 2.
(3) ActiVe Oxygen in Biochemistry; Foote, C. S., Valentine, J. S., Greenberg,
A., Liebman, J. F., Eds.; Blackie Academic and Professional: New York,
1995; Vol. 3.
(18) Gudipati, M. S.; Klein, A. J. Phys. Chem. A 2000, 104, 166-167.
(19) Blumenstock, T.; Comes, F. J.; Schmidt, R.; Brauer, H.-D. Chem. Phys.
Lett. 1986, 127, 452-455.
(20) Brauer, H.-D.; Schmidt, R. J. Phys. Chem. A 2000, 104, 164-165.
(21) Eisenthal, K. B.; Turro, N. J.; Dupuy, C. G.; Hrovat, D. A.; Jenny, T. A.;
Sitzmann, E. V. J. Phys. Chem. 1986, 90, 5168-5173.
(22) Ernsting, N. P.; Schmidt, R.; Brauer, H.-D. J. Phys. Chem. 1990, 94, 5252-
5255.
(23) Aubry, J.-M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003,
36, 668-675.
(4) Turro, N. J.; Chow, M. F. J. Am. Chem. Soc. 1981, 103, 7218-7224.
(5) Stevens, B.; Small, R. D., Jr. J. Phys. Chem. 1977, 81, 1605-1606.
(6) Sigman, M. E.; Zingg, S. P.; Pagni, R. M.; Burns, J. H. Tetrahedron Lett.
1991, 32, 5737-5740.
(24) Dufraisse, C.; Rocher, H. Bull. Soc. Chim. Fr. 1935, 2235-2240.
(25) Dufraisse, C. Bull. Soc. Chim. Fr. 1936, 1847-1872.
(26) Dufraisse, C.; Horclois, R. Bull. Soc. Chim. Fr. 1936, 1894-1905.
(27) Dufraisse, C.; Le Bras, J. Bull. Soc. Chim. Fr. 1937, 5, 1037-1046.
(28) Dufraisse, C.; Velluz, L.; Velluz, M. Bull. Soc. Chim. Fr. 1937, 1260-
1264.
(7) Sitzmann, E. V.; Langan, J. G.; Hrovat, D. A.; Eisenthal, K. B. Chem.
Phys. Lett. 1989, 162, 157-162.
(8) Schmidt, R.; Drews, W.; Brauer, H.-D. J. Photochem. 1982, 18, 365-378.
(9) Schmidt, R.; Drews, W.; Brauer, H.-D. Z. Naturforsch. A 1982, 37, 55-
57.
(29) Dufraisse, C.; Priou, R. Bull. Soc. Chim. Fr. 1939, 1649-1656.
(30) Dufraisse, C.; Velluz, L. Bull. Soc. Chim. Fr. 1942, 171-187.
(31) Dufraisse, C.; Mathieu, J. Bull. Soc. Chim. Fr. 1947, 307-310.
(32) Aksnes, G.; Vagstad, B. H. Acta Chem. Scand. 1979, B33, 47-51.
(33) Bachmann, W. E.; Chemerda, J. M. J. Chem. Soc. 1939, 116-118.
(34) Etienne, A. Bull. Soc. Chim. Fr. 1937, 634-638.
(35) Etienne, A.; Staehelin, A. Bull. Soc. Chim. Fr. 1954, 748-754.
(36) Etienne, A.; Lepeley, J.-C.; Heyme`s, R. Bull. Soc. Chim. Fr. 1949, 835-
840.
(10) Schmidt, R.; Schaffner, K.; Trost, W.; Brauer, H.-D. J. Phys. Chem. 1984,
88, 956-958.
(11) Rigaudy, J.; Defoin, A.; Baranne-Lafont, J. Angew. Chem., Int. Ed. Engl.
1979, 18, 413-415.
(12) Rigaudy, J.; Breliere, C.; Scribe, P. Tetrahedron Lett. 1978, 7, 687-690.
(13) Kearns, D. R.; Khan, A. U. Photochem. Photobiol. 1969, 10, 193-210.
(14) Jesse, K. J. Chem. Phys. Lett. 1997, 264, 193-198.
9
1688
J. AM. CHEM. SOC. 2004, 126, 1688-1698
10.1021/ja035828a CCC: $27.50 © 2004 American Chemical Society