Bidentate Selenium Ligand
Inorganic Chemistry, Vol. 40, No. 18, 2001 4657
asymmetric ligand dppmSe has also been employed to form a
structurally characterized 10-membered ring system [(dppmSe)-
Scheme 1
16
Au2]ClO4 and as a supporting ligand for investigations into
nonconventional hydrogen-bonding systems.17
A number of selenium-bound, heteroleptic gold complexes
have been prepared using the mixed chalcogen ligand, 4,5-
diselenolate-1,3-dithiole-2-thione (dsit) such as the cyclic
example [(dsit)Au2(dppm)]. Interestingly, the use of a zinc
complex (NBu4)[Zn(dsit)] as ligand transfer agent was found
to be favorable to direct addition of the selenium ligand.18
The versatility of the dichalcogenoimidodiphosphinato anions
[R2P(E)NP(E)R2]- as ligands remained largely neglected for
many years after their synthesis by Schmidpeter in the 1960s.19
Recently, interest has been renewed in their coordination abilities
and they have found use in a number of diverse areas such as
catalysis,20 NMR shift reagents,21 and selective metal extract-
ants.22 Ligands with mixed chalcogen donors [R2P(O)NP(E)R2]-
(E ) S, Se) have also been prepared.23 The preparation by
Woollins and co-workers of the selenium analogue24 in 1995
has led to a sizable number of metal diselenoimidodiphosphinate
complexes being reported.24,25
Scheme 2
Gold has been shown to readily coordinate selenium species
in accordance with its “soft” nature and this potential was
touched upon in a recent report concerning the [R2P(Se)NP-
(Se)R2]- ligand.26
As part of an ongoing study of the coordination of sulfur
and selenium ligands at gold(I) centers, we present here an
investigation into the coordination chemistry of the diseleno-
imidodiphosphinate anion as a ligand for gold(I) mono- and
bisphosphine complexes. Compounds of the formula [{N(Ph2-
PSe)2-Se,Se′}AuL] (L ) PPh3, 1; PMe3, 2) were prepared along
with an isonitrile gold diselenoimidodiphosphinate species [{N-
(Ph2PSe)2-Se,Se′}AuCNC6H3Me2-2,6] (3) which was intended
to provide a phosphine-free example for comparison but proved
highly insoluble in common laboratory solvents. The oxonium
compound [(Ph3PAu)3O]BF4 was found to react with K[Ph2P-
(Se)NP(Se)Ph2] to provide the cationic complex [{N(Ph2PSe)2-
Se,Se′}(AuPPh3)2]BF4 (4). To investigate the possibility of ring
formation, two bimetallic examples were prepared. The complex
[{N(Ph2PSe)2-Se,Se′}Au2(dppm)]OSO2CF3 (5) yielded suitable
crystals for an X-ray diffraction study that confirmed its cyclic
nature. The second example [{N(Ph2PSe)2-Se,Se′}2Au2] (6), free
of auxiliary ligands, however, proved insoluble, probably due
to the formation of a polymeric structure (Scheme 2). The
structural studies reveal that the gold center in the [{N(Ph2-
PSe)2-Se,Se′}AuL] complexes [L ) PPh3 (1); (PMe3)2 (2a)] is
able to display different coordination numbers (3 or 4) depending
on the phosphine present. The ability of gold(I) to show higher
coordination numbers than that found in the usual linear species
has been the subject of a recent review.27 Probably owing to
steric crowding, no aurophilic interactions are observed in
complexes 1 and 2a, in contrast to the cyclic species [{N(Ph2-
PSe)2-Se,Se′}Au2(dppm)]OSO2CF3 (5) which has a transannular
gold-gold contact of 3.2687(4) Å and exhibits intermolecular
gold-selenium contacts.
(15) Jones, P. G.; Thoene, C. Inorg. Chim. Acta 1991, 181, 291.
(16) Schmidbaur, H.; Ebner von Eschenbach, J.; Kumberger, O.; Mu¨ller,
G. Chem. Ber. 1990, 123, 2261.
(17) Ahrens, B.; Jones, P. G. Z. Naturforsch. 1999, 54b, 1474. Jones, P.
G.; Ahrens, B. Chem. Commun. 1998, 2307.
(18) Cerrada, E.; Laguna, M. Can. J. Chem. 1998, 76, 1033. Cerrada, E.;
Laguna, M.; Sorolla, P. A. Polyhedron 1997, 17, 295.
(19) Schmidpeter, A.; Bohm, R.; Groeger, H. Angew. Chem., Int. Ed. Engl.
1964, 3, 704. Schmidpeter, A.; Stoll, K. Angew. Chem., Int. Ed. Engl.
1967, 6, 252. Schmidpeter, A.; Stoll, K. Angew. Chem., Int. Ed. Engl.
1968, 7, 549.
(20) Rudler, H.; Denise, B.; Ribeiro Gregorio, J.; Vaissermann, J. Chem.
Commun. 1997, 2299.
(21) Barkaoui, L.; Charrouf, M.; Rager, M.-N.; Denise, B.; Platzer, N.;
Rudler, H. Bull. Soc. Chim. Fr. 1997, 134, 167.
(22) Navra´til, O.; Herrmann, E.; Grossmann, G.; Telpy, J. Collect. Czech.
Chem. Commun. 1990, 55, 364.
(23) Smith, M. B.; Slawin, A. M. Z.; Woollins, J. D. J. Chem. Soc., Dalton
Trans. 1998, 1537. Slawin, A. M. Z.; Smith, M. B. New J. Chem.
1999, 23, 777.
Experimental Section
General Information. The experiments were carried out routinely
in air. NMR: JEOL GX 400 spectrometer using deuterated solvents
with the usual standards at 25°C. MS: Varian MAT311A instrument
(FAB, p-nitrobenzyl alcohol). The complexes [LAuCl] (L ) PMe3,
PPh3),28 [(dppm)(AuCl)2],28 [(2,6-C6H3Me2NC)AuCl],29 and [(Ph3-
(24) Bhattacharyya, P.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D.
J. Chem. Soc., Dalton Trans. 1995, 2489.
(25) Rossi, R.; Marchi, A.; Marvelli, L.; Peruzzini, M.; Casellato, U.;
Graziani, R. J. Chem. Soc., Dalton Trans. 1992, 435. Rossi, R.; Marchi,
A.; Marvelli, L.; Magon, L.; Peruzzini, M.; Casellato, U.; Graziani,
R. J. Chem. Soc., Dalton Trans. 1993, 723. Bhattacharyya, P.;
Novosad, J.; Phillips, J.; Slawin, A. M. Z.; Williams, D. J.; Woollins,
J. D. J. Chem. Soc., Dalton Trans. 1995, 1607. Cea-Olivares, R.;
Novosad, J.; Woollins, J. D.; Slawin, A. M. Z.; Garcia-Montalvo, V.;
Espinosa-Perez, G.; Garcia y Garcia, P. J. Chem. Soc., Chem. Commun.
1996, 519. Cea-Olivares, R.; Garcia-Montalvo, J.; Novosad, J. D.;
Woollins, R. A.; Toscano, G.; Espinosa-Perez Chem. Ber. 1996, 129,
919.
30
PAu)3O]BF4 and the ligand K[Ph2P(Se)NP(Se)Ph2]24 were prepared
following literature procedures.
[{N(Ph2PSe)2-Se,Se′}AuPPh3] (1). An acetone solution (5 mL) of
K[Ph2P(Se)NP(Se)Ph2] (59 mg, 0.10 mmol) was added dropwise to a
(27) Gimeno, M. C.; Laguna, A. Chem. ReV. 1997, 97, 511.
(28) Schmidbaur, H.; Wohlleben, A.; Wagner, F.; Orama, O.; Huttner, G.
Chem. Ber., 1977, 110, 1748.
(26) Woollins, J. D.; Smith, M. B.; Slawin, A. M. Z. Polyhedron 1999,
18, 1135.
(29) Schneider, W.; Angermeier, K.; Sladek, A.; Schmidbaur, H. Z.
Naturforsch. 1996, 51b, 790.