LETTER
New Palladium-Catalysed Access to 3-(1’-Indanylidene) Phthalide
1193
(4) For previous synthesis of ylidene phthalides see: (a) Kelly, T.
R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am.
Chem. Soc. 1988, 110, 6471-6480. (b) Watanabe, M.;
Morimoto, H.; Furukawa, S. Heterocycles 1993, 36, 2681-
2686. (c) For pioneering work see: Holland, H. L.; MacLean,
D. B.; Rodrigo, R. G. A.; Manske, R. F. H. Tetrahedron Lett.
1975, 4323-4326.
Table 2 Influence of the nature of the base
(5) Cavicchioli, M.; Decortiat, S.; Bouyssi, D.; Goré, J.; Balme,
G. Tetrahedron 1996, 52, 11463-11478.
(6) (a) Lambert, C.; Utimoto, K.; Nozaki, H.; Tetrahedron Lett.
1984, 25, 5323-5326. (b) Kundu, N. G.; Pal, M.; Nandi, B. J.
Chem. Soc. Perkin Trans. 1 1998, 561-568 and references
cited therein.
(7) Where necessary the Pd(0) catalyst was preformed by reaction
of palladium acetate with 2 equivalents of monodentate ligand
per Pd in the solvent followed by addition of a reducing agent
(1-heptene or NaBH4).
(8) Wang, R-T.; Chou, F-L.; Luo, F-T. J. Org. Chem. 1990, 55,
4846-4849.
a) except for entry 5, where the product has been purified by recry-
stallisation, all yields were determined by 1H NMR. In all cases, mi-
nor product 6 is also present in small quantities (5-10%).
(9) Rossi, R.; Carpita, A.; Bellina, F. Org. Prep. Proc. Int. 1995,
129-160.
(10) Bleicher, L. S.; Cosford, N. D. P.; Herbaut, A.; McCallum, J.
S.; McDonald, I. A. J. Org. Chem. 1998, 63, 1109-1118.
(11) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester
1996.
use of PPh3 as ligand in place of TFP significantly im-
proved the reaction efficiency (entry 3).
In conclusion, the palladium-catalysed bis-cyclisation re-
action presented herein constitutes a novel and rapid syn-
thetic route to the phthalide nucleus. We are currently
investigating an extension of this work to study the role of
substituents on aromatic rings, which will be reported in
due course.
(12) Negishi, E-I.; Takahashi, T.; Akiyoshi, K. J. Chem. Soc.,
Chem. Commun. 1986, 1338.
(13) Typical experimental procedure : Carboxylic acid 4 (100 mg,
0.266 mmol) in 3 mL of DMSO was treated with cesium
carbonate (104 mg, 0.319 mmol), the resulting solution was
stirred during 15 min. At this time, Pd (0) solution was added
(5% Pd(OAc)2, 10% PPh3, NaBH4 in 2 mL of DMSO). The
mixture was further stirred at 25 °C and followed by GC until
completion. The mixture is diluted with diethyl ether and
washed with brine. The organic layer was dried on Na2SO4,
condensed in vacuo and the residue chromatographed on silica
gel.
References and Notes
(1) Isolation and structure elucidation : see a) Pandey, R. C.;
Toussaint, M. W.; Stroshane, R. M.; Kalita, C. C.; Garretson,
A. A.; Wei, T. T.; Byrne, K. M.; Geoghegan, Jr., R. F.; White,
R. J. J. Antibiot. 1981, 34, 1389-1401; b) Misra, R.; Pandey,
R. C.; Silverton, J. V. J. Am. Chem. Soc. 1982, 104, 4478-
4479.; c) Misra, R.; Pandey, R. C.; Hilton, B. D.; Roller, P. P.;
Silverton, J. V. J. Antibiot. 1987, 40, 786-802.
(2) (a) Byrne, K. M.; C.; Hilton, B. D.; White, R. J.; Misra, R.;
Pandey, R. C. Biochemistry 1985, 24, 478. (b) Warnick-
Pickle, D. J.; Byrne, K. M.; Pandey, R. C.; White, R. J. J.
Antibiot. 1981, 34, 1402. (c) Von Hoff, D. D.; Cooper, J.;
Bradley, E.; Sandbach, J.; Jones, D.; Makuch, R. Am. J. Med.
1981, 70, 1027. (d) Hilton, B.D.; Misra, R.; Zweier, J.L.
Biochemistry 1986, 25, 5533. (e) Latham, M. D.; King, C. K.;
Gorycki, P.; Macdonald, T. L.; Ross, W.E. Cancer
Chemother. Pharmacol. 1989, 24, 167. (f) Dalal, N.S.; Shi, X.
Biochemistry 1989, 28, 748. (g) Yokoi, K.; Hasegawa, H.;
Narita, M.; Asaoka, T.; Kukita, K.; Ishizeki, S.; Nakajima, T.
Jpn Patent 152468, 1985; Chem. Abstr. 1986, 104, 33948j.
(3) Kita, Y.; Higuchi, K.; Yoshida, Y.; Iio, K.; Kitagi, S.; Akai S.;
Fujioka, H. Angew. Chem. Int. Ed. 1999, 38, 683-686 and
references cited therein.
(14) Analytical data : 1H and 13C NMR spectra of 5 were identical
with those reported in the literature.4b
Product 5: 1H NMR (CDCl3, 300 MHz) 3.05-3.11 (2H, m);
3.21-3.28 (2H, m); 7.28-7.42 (3H, m); 7.50-7.55 (1H, m); 7.71
(1H, ddd, J = 1.1; 7.7; 8.1 Hz); 7.95-8.02 (2H, m); 8.32 (1H,
d, J = 8.1 Hz). 13C NMR (CDCl3, 75 MHz) 31.28; 33.06;
122.19; 124.57; 125.9; 126.13; 126.19; 126.87; 129.43;
129.65; 130.89; 134.59; 137.75; 138.26; 140.5; 150.38;
167.38. The stereochemistry of 5 was determined using
Nuclear Overhauser Effect (NOE) experiments: irradiation of
C4 proton ( 8.32, d, J = 8.1 Hz) of 5 produced NOE
enhancement at the signals of C5 (15.4%) and C14 (10.5%).
NMR data for product 6 have been deducted from mixture of
5/6 (entry 7, Table 2). Product 6 1H NMR (CDCl3, 300 MHz)
2.7-2.82 (2H, m); 2.90-3 (2H, m); 7.1-7.8 (6H, m); 8.12
(1H, d, J = 8.4 Hz); 8.4 (1H, d, J = 8.1 Hz)
Product 8 1H NMR (CDCl3, 300 MHz) 2.82 (2H, t, J = 8.45
Hz); 3.14 (2H, m); 6.23 (1H, s); 6.90 (1H, m), 7.18-7.25 (3H,
m); 7.32 (1H, d, J = 7.7 Hz); 7.46 (1H, m); 7.66 (1H, ddd,
J = 1.1; 7.7; 7.7); 7.82 (1H, d, J = 8.1 Hz); 8.26 (1H, d, J = 8.1
Hz).
Article Identifier:
1437-2096,E;2001,0,07,1191,1193,ftx,en;G06701ST.pdf
Synlett 2001, No. 7, 1191–1193 ISSN 0936-5214 © Thieme Stuttgart · New York