12 Journal of Combinatorial Chemistry, 2010 Vol. 12, No. 1
Reports
Scheme 4
References and Notes
(1) Litvinov, V. P.; Rodinovskaya, L. A.; Sharanin Yu, A.; Shesto-
palov, A. M.; Senning, A. Sulfur Rep. 1992, 13, 1–155.
(2) Litvinov, V. P.; Dozenko, V. V.; Krivokolysko, S. G. The
Chemistry of Thienopyridines. In AdVances in Heterocycle
Chemistry; Katritzky, A. R., Ed.; Elsevier Ltd Academic Press:
Amsterdam, 2007; Vol. 93, pp 117-178.
(3) Artemov, V. A.; Ivanov, V. L.; Litvinov, V. P. Khim.
Geterotsikl. Soedin. 2000, 435–470.
(4) Litvinov, V. P. IzV. Akad. Nauk, Ser. Khim. 1998, 2123–2141.
(5) Babichev, F. S.; Sharanin, Yu. A.; Litvinov, V. P.; Promonen-
kov, V. K.; Volovenko, Yu. M. Vnutrimolekulyarnoe Vzai-
modeistVie nitrilinoi i CH_, OH_ i SsH_grupp [Intramole-
cular Interactions of the Nitrile Group with the CH, OH, and
SH Groups]; Naukova Dumka: Kiev, 1985; p 200 (in Russian).
(6) Barker, J. AdV. Heterocycl. Chem. 1977, 21, 65–118.
(7) Gronowitz, S.; Timari, G. J. Heterocycl. Chem. 1990, 27,
1127–1129.
(8) Bjork, P.; Aakerman, T.; Hornfeldt, A. B.; Gronowits, S.
J. Heterocycl. Chem. 1995, 32, 751–754.
(9) Malicorne, G.; Bompart, J.; Giral, L.; Despaux, E. Eur. J. Med.
Chem. 1991, 26, 3–11.
(10) Goerlitzer, K.; Kramer, C.; Boyle, C. Pharmazie 2000, 55,
595–600.
(11) Boschelli, D. H.; Ye, Fei. J. Heterocycl. Chem. 2002, 39, 783–
788.
pyrans. As such, a three-component condensation of 5b,d
with aldehydes 19 and malononitrile (2a) in DMF at 70-80
°C in the presence of Et3N gives pyrans 23a-f with high
regioselectivity and 74-89% yields (Scheme 4).
(12) Munchof, M. J.; Beebe, J. S.; Casavant, J. M.; Cooper, B. A.;
Doty, J. L.; Higdon, R. C.; Hillerman, S. M.; Soderstrom,
C. I.; Knauth, E. A.; Marx, M. A.; Rossi, A. M. K.; Sobolov,
S. B.; Sun, J. Bioorg. Med. Chem. Lett. 2004, 14, 21–24.
(13) Litvinov, V. P.; Dozenko, V. V.; Krivokolysko, S. G. Russ.
Chem. Bull. 2005, 54, 864–904.
(14) Mason, H. J.; Ximao, Wu; Schmitt, R.; Macor, J. E.; Guixue,
Yu. Tetrahedron Lett. 2001, 42, 8931–8934.
(15) Dunn, A. D.; Norrie, R. J. Heterocycl. Chem. 1987, 24, 85–89.
(16) Bremner, D. H.; Dunn, A. D.; Wilson, K. A. Synthesis 1992,
528–530.
(17) Bremner, D. H.; Dunn, A. D.; Wilson, K. A.; Sturrock, K. R.;
Wishart, G. Synthesis 1997, 949–952.
(18) Bremner, D. H.; Dunn, A. D.; Wilson, K. A.; Sturrock, K. R.;
Wishart, G. Synthesis 1998, 1095–1097.
(19) Rodinovskaya, L. A.; Shestopalov, A. M. Russ. Chem. Bull.
2000, 49, 348–354.
(20) Rodinovskaya, L. A.; Shestopalov, A. M.; Gromova, A. V.;
Shestopalov, A. A. Synthesis 2006, 14, 2357–2370.
(21) Dodd, J. H.; Schwender, C. F.; Moore, J. B.; Ritchie, Jr., D. M.;
Gray-Nunez, Y.; Loughney, D.; Kirchner, T.; Miller, W. C.;
Mockoviak, S. Drug Design DiscoVery 1998, 15, 135–148.
(22) Tietze, F.; Brasche, G.; Gericke, K. M. Domino reactions in
organic synthesis; Wiley-VCH: New York, 2006; p 617.
(23) Sharanin, Y. A.; Shestopalov, A. M; Litvinov, V. P.; Klokol,
G. V.; Mortikov, V. Y.; Demerkov, A. S. Zh. Org. Khim. 1988,
24, 854–861.
(24) Litvinov, V. P.; Sharanin, Y. A.; Promonenkov, B. K.;
Rodinovskaya, L. A.; Shestopalov, A. M.; Mortikov, V. Y.
Bull. Acad. Sci. USSR DiV. Chem. Sci. 1984, 33, 1706–1708.
(25) Nesterov, V. N.; Shklover, V. E.; Struchkov, Yu. T.; Sharanin,
Yu. T.; Shestopalov, A. M.; Rodinovskaya, L. A. Acta
Crystallogr. 1985, C 41, 1191–1194.
(26) Shestopalov, A. M. l; Bogornolova, O. P.; Rodinovskaya, L. A.;
Litvinov, V. P.; Bujnicki, B.; Mikolajczyk, M.; Nesterov, V. N.;
Struchkov, Yu. T. Heteroatom Chem. 1993, 4, 593–602.
(27) Shestopalov, A. M.; Emel’yanova, Yu. M. Synthesis and
biological activity of substituted 2-amino-4H-pyranes. In
Selected methods for synthesis and modification of heterocy-
clices; Kartsev, V. G., Ed.; IBS Press: Moscow, 2003, Vol.
2, pp 363-390.
Most likely, this domino-type reaction proceeds via the
Knoevenagel f the Michael f and the Thorpe-Ziegler
steps. This is supported by the numerous examples of
stepwise pyrans syntheses, where unsaturated nitriles are first
prepared via the Knoevenagel reaction and then used in the
Michael reaction with 1,3-dicarbonyl compounds.20,27 Sub-
sequently, the resulting Michael adducts undergo cyclization
and 1,3-sigmatropic shift and form 2-amino-4H-pyrans 23.
The 1H NMR spectra of 23 contain NH2 and C6H singlets in
the 7.17-7.20 and 4.43-4.48 ppm regions. Similar to 5, 12,
14, 15, and 17, compounds 23 exist in a tautomeric form of
pyridine-5(1H)-ones. The 13C NMR spectra of 23 contain
characteristic C(O)NH signals at 158.25-158.77 ppm.
In conclusion, we have developed several domino-type
protocols: (1) SN2 reaction f Thorpe-Ziegler reaction f
Thorpe-Guareschi reaction, (2) double domino reaction SN2
reaction f Thorpe-Ziegler reaction f Thorpe-Guareschi
reaction, (3) SN2 reaction f Thorpe-Ziegler reaction, and
(4) Knoevenagel reaction f Michael reaction f hetero-
Thorpe-Ziegler reaction, which by themselves or in com-
binations significantly extend combinatorial potential for the
synthesis of new complex heterocycle systems.
Acknowledgment. This work was supported in part by
the Russian Foundation for Basic Research, grant no. 09-
03-00349. We are also grateful to Bruker Moscow for
providing us with a MicrOTOF II instrument for spectro-
metric measurements.
Supporting Information Available. Detailed experimen-
tal procedures and compound characterization data for all
products. This material is available free of charge via the
CC9001372