5546
R. A. Illos et al. / Tetrahedron Letters 47 (2006) 5543–5546
9. De Santis, G.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.;
Sacchi, D. Inorg. Chem. 1995, 34, 3581–3582.
10. Sutovsky, Y.; Likhtenshtein, G. I.; Bittner, S. Tetrahedron
2003, 59, 2939–2945.
11. Illos, R. A.; Harlev, E.; Bittner, S. Tetrahedron Lett. 2005,
46, 8427–8430.
corresponding to the reduction of quinone and semiqui-
none radical anions, respectively). It was found that the
redox reaction was accompanied by changes in the UV–
vis spectra, demonstrating the electro-interconversion of
1 to 1a as well as in the opposite direction (95–100%)
(Fig. 3).
12. Hoover, J. R. E.; Day, A. R. J. Am. Chem. Soc. 1954, 76,
4148–4152.
In conclusion, a new ‘all-organic’ fluorescent switch was
designed and synthesized. In such a system, the redox
control, the spacer and the fluorophore subunits can
be changed at will to form a variety of new molecular
switching systems. Consequently, the emission and the
absorption properties can be manipulated and con-
trolled. The synthesis of such donor–acceptor dyads
with switchable function exhibiting a ‘logic’ behavior
is of great interest for applications in the field of mole-
cular electronics and molecular recognition. In this
letter, we have shown that changing the nature of the
spacer from a cyclic non-conjugated to a rigid conju-
gated structure induces conformational changes that
have direct repercussion on the electronic absorption
and emission as well as on the switching characteristics.
13. Bittner, S.; Krief, P.; Massil, T. Synthesis 1991, 1, 215–
216.
14. Luo, Y. L.; Chou, T. C.; Cheng, C. C. J. Heterocycl.
Chem. 1996, 33, 113–117.
1
15. 1: mp 211–212 ꢁC. H NMR (DMSO, 500 MHz): d 10.80
(br s, 1H, NH), d 8.42–8.44 (d, 1H, J = 9.0 Hz), 8.38–8.40
(d, 1H, J = 8.5 Hz), 8.18–8.20 (dd, 1H, J = 7.5, 1.1 Hz),
8.02–8.06 (dt, 2H, J = 9.0, 1.3 Hz), 7.87 (d, 1H,
J = 2.1 Hz), 7.75–7.83 (dsxt, 2H, J = 9.0, 8.5, 1.7,
1.3 Hz), 7.61–7.64 (t, 1H, J = 8.5 Hz), 7.53–7.57 (t, 1H,
J = 8.5 Hz), 7.37–7.39 (d, 1H, J = 9.0 Hz), 7.23–7.24 (d,
1H, J = 7.3 Hz), 7.17–7.19 (dd, 1H, J = 9.0, 2.1 Hz), 2.76
(s, 6H). 13C NMR (DMSO, 125 MHz): d 180.5 (C@O),
178.5 (C@O), 153.0, 138.0, 135.5, 135.2, 134.7, 134.6,
133.6, 133.0, 130.5, 130.2, 129.5, 129.4, 128.6, 126.5, 126.4,
124.6, 123.9, 121.2, 119.2, 117.4, 115.7, 115.0, 112.5, 45.5.
DEPT 13C NMR (DMSO, 125 MHz): 134.6, 133.6, 130.4,
130.1, 128.6, 126.5, 126.4, 123.9, 121.2, 119.1, 115.7, 114.9,
112.5, 45.5. HRMS (CI) (m/z): 495.125395 (M+), calcd
mass 495.125278 for C28H21N3O4S.
Acknowledgements
16. C28H21N3O4S, orthorhombic, space group Pca21; a =
˚
˚
˚
We wish to thank Ms. E. Solomon for skillful help, Dr.
Sofia Kolusheva for her help in fluorescence measure-
ments, Ms. A. Levkovitch for NMR measurements
and Ms. S. Whiskerman for help in X-ray analysis.
20.657 (3) A, b = 7.151 (9) A, c = 30.870 (13) A,
V = 4560.1 (6) A , Z = 8, d = 1.444 g · cmꢀ3, T = 120
3
˚
(2) K. Diffractometer scan mode: Nonius Kappa CCD,
monochromatized Mo-Ka radiation, 2436 unique reflec-
tions in the range 2.79 6 2h 6 20.81ꢁ. Full matrix least
squares refinement with 2436 reflections [I > 2r(I)] and
209 variables; R = 0.0584, RW = 0.1101; residual electron
density 0.251 e · Aꢀ3. Crystallographic data (excluding
˚
References and notes
structure factors) for the structure in this Letter have been
deposited with the Cambridge Crystallographic Data
Centre as supplementary publication number CCDC
292197. Copies of the data can be obtained free of charge,
on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44 (0)1223 33603 or e-mail:
deposit@ccdc.cam.ac.uk]. Each request should be accom-
panied by the complete citation of this publication.
17. Electronic absorption data in methanol, for 1: kmax (nm):
218, 270, 340, 400. Molar absorptivity log e: 4.46, 4.32,
3.55, 3.54, respectively, and for 1a: kmax (nm): 216, 256,
336, log e: 4.46, 4.22, 3.74, respectively.
1. De Santis, G.; Fabbrizzi, L.; Licchelli, M.; Sardone, N.;
Velders, A. H. Chem. Eur. J. 1996, 2, 1243–1250.
2. Bergonzi, R.; Fabbrizzi, L.; Licchelli, N.; Mangano, C.
Coord. Chem. Rev. 1998, 170, 31–46.
3. Schoot, C. J.; Ponjee, J. J.; Van Dam, H. T.; Van Doorn,
R. A.; Bolwijn, P. T. Appl. Phys. Lett. 1973, 23, 64–65.
4. Iyoda, T.; Saika, T.; Honda, K.; Shimidzu, T. Tetrahedron
Lett. 1989, 30, 5429–5432.
5. D’Souza, F. J. Am. Chem. Soc. 1996, 118, 923–924.
6. D’Souza, F.; Deviprasad, G. R. J. Org. Chem. 2001, 66,
4601–4609.
7. Goulle, V.; Harriman, A.; Lehn, J.-M. J. Chem. Soc.,
Chem. Commun. 1993, 1034–1036.
18. Benniston, A. C.; Grosshenny, V.; Harriman, A.; Ziessel,
R. J. Chem. Soc., Dalton Trans. 2004, 1227–1232.
19. Bittner, S.; Gorohovsky, S.; Paz-Tal, O.; Becker, J. Y.
Amino Acids 2002, 22, 71–93.
8. Koike, T.; Watanabe, T.; Aoki, S.; Kimura, E.; Shiro, M.
J. Am. Chem. Soc. 1996, 118, 12696–12703.