Please do not adjust margins
Chemical Science
Page 4 of 6
COMMUNICATION
Journal Name
Lactam substrates generally furnish outstanding yields of
diastereomeric mixtures of spirocyclic β-hydroxy lactams in up to
78:22 dr. Importantly, the diastereomers of this substrate class are
readily separable by flash column chromatography on silica. While
the pyrrolidinone substrates provide the corresponding
azaspirocycles 7b/c and 8b/c in high yield, the dr’s and ee’s are
diminished (entries 1 and 2). By contrast, the major diastereomers of
the 6,5-azaspirocycle 9b (entry 3) and the 6,6-azaspirocycle 10b
(entry 4) could be prepared with excellent ee, while the minor
diastereomers 9 and 10c were obtained in only moderate ee.
Conflicts of interest
The authors declare no conflicts of interest.
DOI: 10.1039/D0SC02366C
Acknowledgements
The authors wish to thank NIH-NIGMS (R01GM080269), Astellas
Pharma, Inc. (postdoctoral fellowship to K.I.), the Alfried Krupp von
Bohlen and Halbach Foundation (fellowship to M.W.) and Amgen,
Inc. (graduate fellowship to S.B.). We also thank Dr. Scott C. Virgil for
his support with chromatographic analysis, high-resolution mass
analysis, and assistance during the crystallization process.
Debenzoylation of 6,6-azaspirocycle 10b furnishes lactam 13, a
synthetic intermediate previously employed in the synthesis of the
alkaloid (–)-isonitramine8f,13 thus completing
a
7-step
1
For reviews of enantioselective synthesis of spirocyclic compounds, see: a) R.
Rios, Chem. Soc. Rev., 2012, 41, 1060; b) A. K. Franz, N. V. Hanhan, N. R. Ball-
Jones, ACS Catal., 2013, 3, 540; c) N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org.
Biomol. Chem., 2012, 10, 5165; d) B. M. Trost, M. Brennan, Synthesis, 2009, 18,
3003; e) D. Cheng, Y. Ishihara, B. Tan, C. F. Barbas, III; ACS Catal., 2014, 4, 743.
For general reviews of synthetic strategies toward spirocycles, see: a) L. K.
Smith, I. R. Baxendale, Org. Biomol. Chem., 2015, 13, 9907; b) A. P. Krapcho,
Synthesis, 1974, 6, 383; c) M. Sannigrahi, Tetrahedron, 1999, 55, 9007; d) R.
Pradhan, M. Patra, A. K. Behera, B. K. Mishra, R. K. Behera, Tetrahedron, 2006,
62, 779; e) C. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed., 2007, 46, 8748;
f) S. Kotha, A. C. Deb, K. Lahiri, E. Manivannan, Synthesis, 2009, 2, 165; g) C.-X.
Zhuo, C. Zheng, S.-L. You, Acc. Chem. Res., 2014, 47, 2558; h) V. A. D’yakonov,
O. A. Trapeznikova, A. de Meijere, U. M. Dzhemilev, Chem. Rev., 2014, 114,
5775.
enantioselective synthesis of this natural product (Scheme 1).
Furthermore, the stereochemistry of 13 (and thus of 10b) could be
confirmed by chemical correlation with this known intermediate
(Scheme 1). The absolute and relative stereochemistry of all other
azaspirocycles has been determined in analogy to compound 8b
(Table 3, entry 2), which was determined by X-ray diffraction.
2
Scheme 1. Formal synthesis of (–)-isonitramine.
1.
OEt
1. n-BuLi, THF
–78 °C, then
BzCl
O
O
O
Br
OEt
3
4
For synthesis of selected spirocyclic natural products, see: a) A. Lerchner, E. M.
Carreira, J. Am. Chem. Soc., 2002, 124, 14826; b) B. M. Trost, M. K. Brennan Org.
Lett., 2006, 8, 2027; c) T. Doi, Y. Iijima, M. Takasaki, T. Takahashi J. Org. Chem.,
2007, 72, 3667.
t-BuOK, PhMe, 80 °C
HN
BzN
O
2. LDA, THF
–78 °C, then
O
2. HCl, acetone/H2O
0 – 23 °C
69% yield over
2 steps
11
12
N
O
For reviews of enantioselective synthesis of quaternary all-carbon
stereocenters, see: a) K. Fuji, Chem. Rev., 1993, 93, 2037; b) E. J. Corey, A.
Guzman-Perez, Angew. Chem. Int. Ed., 1998, 37, 388–401; c) J. Christoffers, A.
Mann, Angew. Chem. Int. Ed., 2001, 40, 4591; d) I. Denissova, L. Barriault,
Tetrahedron, 2003, 59, 10105; e) C. J. Douglas, L. E. Overman, Proc. Natl. Acad.
Sci. U. S. A., 2004, 101, 5363; f) J. Christoffers, A. Baro, Adv. Synth. Catal., 2005,
347, 1473; g) B. M. Trost, C. Jiang, Synthesis, 2006, 3, 369; h) P. G. Cozzi, R.
Hilgraf, N. Zimmermann, Eur. J. Org. Chem., 2007, 2007, 5969; i) J. Prakash, I.
Marek, Chem. Commun., 2011, 47, 4593; j) K. W. Quasdorf, L. E. Overman,
Nature, 2014, 516, 181; k) Y. Liu, S.-H. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem.
Res., 2015, 48, 740; l) J. Feng, M. Holmes, M. J. Krische, Chem. Rev., 2017, 117,
12564; m) D. Pierrot, I. Marek, Angew. Chem. Int. Ed., 2019, 59, 36.
For examples of racemic syntheses of 1,3-diketospiranes, see: a) H. Gerlach, W.
Muller, Angew. Chem. Int. Ed., 1972, 11, 1030; b) T. N. Wheeler, C. A. Jackson,
K. H. Young, J. Org. Chem., 1973, 39, 1318; c) W. Carruthers, A. Orridge, J. Chem.
Soc. Perkin Trans. 1, 1977, 21, 2411.
For preparations of enantioenriched 1,3-diketospiranes, see: a) H. Gerlach,
Helv. Chim. Acta, 1968, 51, 1587; b) E. G. E. Hawkins, R. Large, J. Chem. Soc.
Perkins Trans. 1, 1973, 2169; c) T. Hayashi, K. Kanehira, T. Hagihara, M. Kumada,
J. Org. Chem., 1988, 53, 113; d) R. Brunner, H. Gerlach, Tetrahedron:
Asymmetry, 1994, 5, 1613; e) J. A. Nieman, M. Parvez, B. A. Keay, Tetrahedron:
Asymmetry, 1993, 4, 1973; f) H. Suemune, K. Maeda, K. Kato, K. Sakai, J. Chem.
Soc. Perkin. Trans. 1, 1994, 3441; g) Z. Han, Z. Wang, K. Ding, Adv. Synth. Catal.,
2011, 353, 1584; h) H. Tsukamoto, A. Kawase, T. Doi, Chem. Commun., 2015, 51,
8027.
N
ref. 12
O
O
O
Pd(OAc)2 (10 mol %)
(S)-t-Bu-PHOX (15 mol %)
BzN
O
BzN
thymol, 1,4–dioxane, 40 °C
CHO
OH
54% yield, 93% ee
10a
10b
O
NH3 (aq.)
THF
LAH
HN
HN
THF
OH
OH
(–)-isonitramine
ref. 13a
95% yield
5
6
13
In conclusion, we have reported a catalytic, enantioselective
method for the construction of spirocyclic compounds containing all-
carbon quaternary centers. This transformation provides
unprecedented access to enantioenriched 1,3-diketospiranes of
several sizes as well as spirocyclic b-hydroxy lactams which are useful
for natural product synthesis, as evidenced by our application of this
chemistry to the synthesis of (–)-isonitramine in 7 steps from
commercially available starting materials. We envision that this
method will be applicable to a wide range of potential target
molecules, as well as provide access to a variety of valuable chiral
building blocks.
7
For accounts and reviews of palladium-catalyzed allylic alkylation chemistry,
see: a) B. M. Trost, D. L. Van Vranken, Chem. Rev., 1996, 96, 395; b) B. M. Trost,
Acc. Chem. Res., 1996, 29, 355; c) G. Helmchen, J. Organomet. Chem., 1999, 576,
203; d) B. M. Trost, Chem. Pharm. Bull., 2002, 50, 1; e) T. Gräning, H.-G. Schmalz,
Angew. Chem. Int. Ed., 2003, 42, 2580; f) B. M. Trost, J. Org. Chem., 2004, 69,
5813; g) S.-L. You, L.-X. Dai, Angew. Chem. Int. Ed., 2006, 45, 5246; h) J. T. Mohr,
B. M. Stoltz, Chem. Asian J., 2007, 2, 1476; i) Z. Lu, S. Ma, Angew. Chem. Int. Ed.,
2008, 47, 258; j) D. C. Behenna, J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. W.
Harned, K. Tani, M. Seto, S. Ma, Z. Novák, M. R. Krout, R. M. McFadden, J. L.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins