stirred overnight at rt. After evaporation, the residue was puri-
fied by RP-18 column chromatography (MeOH–H2O, 1 : 1,
then 6 : 4) to yield product 15 (25 mg, 80%); δ(CDCl3) 8.30 (2 H,
d, J5Ј,6Ј = J3Ј,2Ј 9.15, 3Ј-H and 5Ј-H), 7.36 (2 H, d, J2Ј,3Ј = J6Ј,5Ј 9.15,
2Ј-H and 6Ј-H), 7.12 (1 H, dd, J5Љ,4Љ 4.58, J5Љ,3Љ 1.98, 5Љ-H Dcp),
6.97 (1 H, dd, J3Љ,4Љ 3.10, J3Љ,5Љ 2.14, 3Љ-H Dcp), 6.14 (1 H, dd,
J4Љ,5Љ 4.58, J4Љ,3Љ 3.30, 4Љ-H Dcp), 5.04 (2 H, s, OCH2COO); m/z
chemical purity, TLC). After concentration, the residue was
dissolved in CHCl3 (1 ml), stored at Ϫ20 ЊC and used for PAL
the next day. (All manipulations with methanolic solutions were
performed rapidly to avoid perceptible hydrolysis of ester bonds
in nmol of [125I]-12.)
Photolysis of [125I]-12 in the fowl plague virus. A solution of
the probe [125I]-12 (80 µCi) in ethanol (10 µl) was added under
argon to the virus suspensions in phosphate buffered saline, pH
7.0 (0.1 mg protein mlϪ1, 1 ml, pre-bubbled with argon) and
incubated for 3 h at 37 ЊC and gentle rocking. Then the suspen-
sions were irradiated for 5 min at λ > 320 nm (CuSO4 filter) and
ambient temperature, with stirring. After delipidation of the
samples with 3 volumes of CHCl3–MeOH, 1 : 3, v/v (sodium
dodecyl sulfate was added up to 0.4% to some samples, and
they were incubated for 15 min prior to the addition of organic
solvents to achieve more exhaustive delipidation), protein pre-
cipitates (2000g centrifugation) were dried in vacuo, and then
subjected to PAGE according to the established procedure,18c,19
with drying and autoradiography.
(
252Cf ) 315.7 (80%, Mϩ); C14H9N3O6 (Mϩ) requires 315.0551.
11-(1-Diazocyclopenta-2,4-dien-2-ylcarbonyloxy)undecanoyl
GM1 16. Triethylamine (1 µl, 7 µmol) and a solution of
p-nitrophenyl ester of 13 (0.53 mg, 1.2 µmol) in DMSO (50 µl)
were mixed with a solution of lyso-GM1 (1 mg, ∼1 µmol) in
DMSO (50 µl). After 16 h incubation at rt, a drop of water, and
CHCl3–MeOH, 1 : 1 (0.1 ml) were added to the reaction
mixture; the following gel filtration (0.5 × 20 cm column) in a
mixture CHCl3–MeOH, 1 : 1, yielded TLC-pure ganglioside 16
(∼98% on the basis of UV absorption); UV spectrum is similar
to that of the ester 11; δ(CD3OD) (data for the several protons)
7.35 (1 H, br dd, J5Ј,4Ј 4.58, J5Ј,3Ј 1.83, 5Ј-H), 6.97 (1 H, br t (dd,
J3Ј,4Ј 3.4, J3Ј,5Ј 1.8), 3Ј-H), 6.26 (1 H, br dd, J4Ј,5Ј 4.37, J4Ј,3Ј 3.46,
4Ј-H), 5.87 (1 H, dt, J5,4 15.34, J5,6 7.72, 5-H of (E)C᎐C), 5.64
᎐
Acknowledgements
(1 H, dd, J4,5 15.21, J4,3 7.78, 4-H of (E)C᎐C), 4.63, 4.55, and
᎐
4.49 (3 × 1 H, 3 dd, J 7.61, 8.03, and 7.81, 1-H hexapyranoses
This work was supported by the Russian Foundation for Basic
Research (RFBR) (grant no. 00-04-48922). We are grateful to
Dr A. S. Gambaryan, Institute of Poliomielitis, Moscow,
for the kind gift of the influenza virus samples, and Dr A. B.
Tuzikov, Institute of Bioorganic Chemistry, for the helpful
discussions. We thank Dr I. I. Mikhalyov for preparation
of the lysoganglioside, and Dr Bo Ek, The Swedish University
of Agricultural Sciences, Uppsala, for the HRMS spectra.
2
3
β), 4.05 (1 H, m, 2-H), 2.92 (1 H, dd, J 12.20, J 4.42, 3-Heq
NeuAcα), 2.36 (2 H, t, J 7.52, CH2CO), 2.20 and 2.18 (2 × 3 H,
2 s, 2 NAc), 2.11 (1 H, dd ∼ t, J 12.10, 3-Hax NeuAcα), 1.91
(2 H, m, CH2CH2CO), 1.45–1.55 (∼36 H, m), 1.08 (3 H, t,
ϩ
J 7.10, Me); m/z (ESI) 1582.875 (100%, M1 ϩ H), 1604.869
ϩ
(33, M1ϩ ϩ Na), 1620.837 (61, M1ϩ ϩ K); C72H119N5O33 (M1
)
ϩ
requires 1581.7885 [(M1 ϩ H) requires 1582.7963]; 1610.912
(39, M2ϩ ϩ H), 1632.893 (25, M2ϩ ϩ Na), 1648.866 (49, M2ϩ ϩ
ϩ
ϩ
K); C74H123N5O33 (M2 = M1 ϩ 2CH2) requires 1609.8198
[(M2ϩ ϩ H) requires 1610.8276].
References
1 (a) J. R. Knowles, Acc. Chem. Res., 1972, 5, 155; (b) H. Bayley and
J. R. Knowles, Methods Enzymol., 1977, 46, 69; (c) J. Brunner,
Annu. Rev. Biochem., 1993, 62, 483; (d ) S. A. Fleming, Tetrahedron,
1995, 51, 12479; (e) F. Kotzyba-Hilbert, I. Kapfer and M. Goeldner,
Angew. Chem., Int. Ed. Engl., 1995, 107, 1391; ( f ) F. Knoll, T. Kolter
and K. Sandhoff, Methods Enzymol., 2000, 311, 568.
2 P. J. A. Weber and A. G. Becksickinger, J. Peptide Res., 1997, 49, 375.
3 J. J. Tate, J. Persinger and B. Bartholomew, Nucleic Acids Res., 1998,
26, 1421.
4 (a) F. C. Greenwood, W. M. Hunter and J. S. Glover, Biochem. J.,
1963, 89, 114; (b) M. A. K. Markwell, Anal. Biochem., 1982, 125,
427; (c) S. M. Moerlein, W. Beyer and G. Stocklin, J. Chem. Soc.,
Perkin Trans. 1, 1988, 779; (d ) K. Farah and N. Farouk, J. Labelled
Compd. Radiopharm., 1998, 41, 255.
5 S. X. Cai, D. J. Glenn and J. F. W. Keana, J. Org. Chem., 1992, 57,
1299.
6 T. Weber and J. Brunner, J. Am. Chem. Soc., 1995, 117, 3084.
7 G. Dorman and G. D. Prestwich, Biochemistry, 1994, 33, 5661.
8 (a) P. E. Nielsen, J. B. Hansen, T. Thomsen and O. Burhardt,
Experientia, 1983, 39, 1063; (b) J. C. Martin and D. R. Bloch, J. Am.
Chem. Soc., 1971, 93, 451.
9 M. O. Karyukhina, J. G. Molotkovsky and L. D. Bergelson, Sov. J.
Bioorg. Chem. (Transl. of Bioorg. Khim.), 1988, 14, 696.
10 V. Yu. Uvarov, A. I. Sotnichenko, E. L. Vodovozova, J. G.
Molotkovsky, E. F. Kolesanova, Yu. A. Lyulkin, A. Stier, V. Krueger
and A. I. Archakov, Eur. J. Biochem., 1994, 222, 483.
11 For a preliminary communication, see E. L. Vodovozova, E. V.
Tsibizova and J. G. Molotkovsky, Russ. J. Bioorg. Chem. (Transl. of
Bioorg. Khim.), 1998, 24, 280.
12 (a) D. J. Cram and R. D. Partos, J. Am. Chem. Soc., 1963, 85, 1273;
(b) W. Ando, Y. Saiki and T. Migita, Tetrahedron, 1973, 29, 3511;
(c) M. Z. Kassaee, M. R. Nimlos, K. E. Downie and E. E. Waali,
Tetrahedron, 1985, 41, 1579.
(1-Diazocyclopenta-2,4-dien-2-ylcarbonyloxy)acetyl GM1 17.
Ganglioside 17 was synthesised as described for the probe 16,
from lyso-GM1 (1 µmol) and p-nitrophenyl Dcp-oxyacetate 15
(380 µg, 1.2 µmol); yield 88% (on the basis of the UV absorp-
tion); δ(CD3OD) 7.40 (1 H, br dd, J5Ј,4Ј 4.6, J5Ј,3Ј 1.8, 5Ј-H), 7.09
(1 H, br t, 3Ј-H), 6.29 (1 H, br t (dd, J4Ј,5Ј 4.3, J4Ј,3Ј 3.3), 4Ј-H),
5.89 (1 H, dt, J5,4 15.32, J5,6 7.70, 5-H of (E)C᎐C), 5.65 (1 H,
᎐
dd, J4,5 15.20, J4,3 7.72, 4-H of (E)C᎐C), 4.63, 4.59, and 4.50
᎐
(3 × 1 H, 3 dd, J 7.60, 8.02, and 8.02, 1-H hexapyranoses β),
2
3
4.03 (1 H, m, 2-H), 2.92 (1 H, dd, J 12.20, J 4.40, 3-Heq
NeuAcα), 2.85 (2 H, s, COCH2ODcp), 2.20 (2 × 3 H, br s, 2
NAc), 1.45–1.57 (∼22 H, m), 1.09 (3 H, t, J 7.10, Me); m/z (ESI)
1456.740 (10%, M1ϩ ϩ H), 1478.714 (87, M1ϩ ϩ Na), 1494.701
(90, M1ϩ ϩ K); C63H101N5O33 (M1ϩ) requires 1455.6477 [(M1ϩ ϩ
ϩ
H) requires 1456.6555]; 1484.723 (20, M2 ϩ H), 1506.740
ϩ
(67, M2ϩ ϩ Na), 1522.722 (100, M2ϩ ϩ K); C65H105N5O33 (M2
ϩ
ϩ
= M1 ϩ 2CH2) requires 1483.6790 [(M2 ϩ H) requires
1484.6868].
PAL of the membrane proteins of the influenza virus
Radioiodinated phospholipid probe [125I]-12. A solution of the
phosphatidylcholine 12 (∼1.6 µg, ∼2 nmol) in 10 µl of AcOH
was added to a solution of Na125I (nca; 0.5 nmol, >2000 Ci
mmolϪ1, 1 mCi) in aqueous NaOH (10 µl, pH 10.0) in com-
mercial ampoule, followed by addition of ∼11% peracetic acid
solution in AcOH (5 µl). After short vortexing and 5 min incu-
bation at rt, the reaction was quenched with 10% NaHSO3
(50 µl) and 5 M NaOH (35 µl). Then the mixture was extracted
with a CHCl3–MeOH mixture (2 : 1, 50 µl × 2) by vortexing.
The organic phases were collected and co-evaporated, the resi-
due was dissolved in an MeOH–CHCl3–H2O system, 10 : 1 : 1,
applied on an RP-18 micro-column (200 µl) and washed with
MeOH–H2O (9 : 1, 200 µl, then 3 : 2, 1 ml). Elution with MeOH
(2 ml) yielded ∼0.96 mCi of the probe [125I]-12 (95% of radio-
13 N. J. Turro, Modern Molecular Photochemistry, Benjamin/
Cummings, New York, 1978, pp. 125, 126, 192.
14 D. S. Watt, K. Kawada, E. Leyva and M. S. Platz, Tetrahedron Lett.,
1989, 30, 899.
15 (a) D. Peters, J. Chem. Soc., 1959, 1761; (b) V. A. Mironov, E. V.
Sobolev and A. N. Elizarova, Tetrahedron, 1963, 19, 1939.
16 For example, see (a) P. Chakrabarti and H. G. Khorana,
Biochemistry, 1975, 14, 5021; (b) C. M. Gupta, R. Radhakrishnan
J. Chem. Soc., Perkin Trans. 1, 2001, 2221–2228
2227