of the isoxazolinone, and nitrosative cleavage gave compound
20 containing the delicate, skipped enyne motif. This sequence
corresponds to effecting the addition of stabilised and un-
reactive propargylic radical 21 to the unactivated olefin present
in 2e. Incidentally, the elaboration of a b-ketoester in the
4-position under neutral conditions via xanthate 8a is worth
underlining. Usually, it is necessary to resort to the highly basic
di-anion10 or to the bis-silylenol ether under Lewis acid
catalysis11 in order to functionalise position 4 without affecting
the much more acidic position 2 of the ketoester.
In summary, the present approach complements existing
methods by allowing the rapid assembly of a variety of
otherwise inaccessible alkynes. It also brings a practical
solution to the longstanding problem of finding synthetically
useful and tame surrogates for the unavailable and unruly
alkynyl radicals.
Notes and references
1 D. A. Ben-Efraim, in The Chemistry of the Carbon–Carbon Triple
Bond, ed. S. Patai, John Wiley & Sons, Chichester, 1978, chap. 18, pp.
755–812; V. Jäger, in Methoden Org. Chem. (Houben-Weyl), Georg
Thieme Verlag, Stuttgart, 1977; Vol. 5/2a; L. Brandsma, Preparative
Acetylenic Chemistry, Elsevier Science, New York, 1992; Modern
Acetylene Chemistry, ed. P. J. Stang and F. Diederich, Wiley-VCH,
Weinheim, 1995.
2 M.-P. Denieul, B. Quiclet-Sire and S. Z. Zard, Tetrahedron Lett., 1996,
37, 5495.
3 K. M. Erwin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison,
V. M. Bierbaum, C. H. DuPuy, W. C. Lineberger and G. B. Ellison,
J. Am. Chem. Soc., 1990, 112, 5750; M. S. Robinson, M. L. Polek, V. M.
Bierbaum, C. H. DuPuy and W. C. Lineberger, J. Am. Chem Soc., 1995,
117, 6766.
4 G. Martelli, P. Spagnolo and M. Tiecco, J. Chem. Soc. (B), 1970,
1413.
5 J. Boivin, L. Elkaim, P. G. Ferro and S. Z. Zard, Tetrahedron Lett.,
1991, 32, 5321; J. Boivin, S. Huppé and S. Z. Zard, Tetrahedron Lett.,
1995, 36, 5737; J. Boivin, S. Huppé and S. Z. Zard, Tetrahedron Lett.,
1996, 37, 8735.
6 S. Z. Zard, Angew. Chem., Int. Ed. Engl., 1997, 36, 672.
7 A. R. Katritzky, P. Barczynski, D. L. Osterkamp and T. I. Yousaf,
J. Org. Chem., 1986, 51, 4037.
8 L. Garcia-Rio, E. Iglesias, J. Ramos Leis, M. Elena Peita and A. Rios,
J. Chem. Soc., Perkin Trans. 2, 1993, 29; L. Garcia-Rio, J. Ramos Leis,
J. A. Moreira and F. Norberto, J. Chem. Soc., Perkin Trans. 2, 1998,
1613; L. Garcia-Rio, J. Ramos Leis, J. A. Moreira and F. Norberto,
J. Org. Chem., 2001, 66, 381.
Scheme 2 Reagents and conditions: (i) lauroyl peroxide (5–30 mol%),
1,2-dichloroethane, reflux; (ii) lauroyl peroxide (100–110%), 1,2-dichloro-
ethane, reflux; (iii) NH2OH.HCl, AcONa, EtOH, reflux; (iv) NaNO2,
FeSO4, AcOH, H2O, RT; (v) allyl bromide, K2CO3, acetone, reflux.
9 A. Liard, B. Quiclet-Sire and S. Z. Zard, Tetrahedron Lett., 1996, 37,
5877.
10 A. Liard, B. Quiclet-Sire, R. N. Saicic and S. Z. Zard, Tetrahedron Lett.,
1997, 38, 1759; N. Cholleton and S. Z. Zard, Tetrahedron Lett., 1998,
39, 7295; T.-M. Ly, B. Quiclet-Sire, B. Sortais and S. Z. Zard,
Tetrahedron Lett., 1999, 40, 2533.
11 S. N. Huckin and L. Weiler, J. Am. Chem Soc., 1974, 96, 1082.
12 T.-H. Chan and P. Brownbridge, J. Chem. Soc., Chem. Commun., 1979,
578; H. Hagiwara, K. Kimura and H. Uda, J. Chem. Soc., Perkin Trans.
1, 1992, 693.
azolinone and nitrosation furnished the desired alkyne 15 in
70% yield for the two steps.
A similar sequence can be used to illustrate the case of a
propargyl radical equivalent. As shown in the bottom part of
Scheme 2, radical addition of xanthate 8a to the same olefin 2e
and similar ring closure provided indoline 17 in 42% overall
yield. Allylation of the ketoester with allyl bromide, formation
Chem. Commun., 2001, 1304–1305
1305