yield. Further synthetic study is now under way in our
laboratory.
This study was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, Sports, and
Culture, Japan (11780410, J. I.).
Notes and references
† 1: colorless oil. [a]D22 +19.7 (c 0.14, CHCl3); 1H-NMR (C6D6, 400 MHz)
d 7.32 (2H, d, J 8.5 Hz), 7.25–7.06 (5H, m), 6.85 (2H, d, J 8.5), 4.79 (1H,
d, J 6.8), 4.68 (1H, dd, J 1.3, 4.6), 4.65 (1H, d, J 6.8), 4.51–4.43 (2H, m),
4.43 (1H, d, J 11.2), 4.43–4.32 (3H, m), 4.23 (1H, d, J 12.2), 3.85 (1H, dd,
J 6.6, 10.0 Hz), 3.82 (1H, dd, J 8.3, 8.7), 3.69 (1H, dd, J 8.3, 8.7), 3.67–3.58
(3H, m), 3.57 (1H, dd, J 1.3, 3.4), 3.30 (3H, s), 2.83 (1H, ddd, J 2.4, 8.8,
12.2), 2.62 (1H, ddd, J 7.4, 12.7, 14.6), 2.37–2.28 (1H, m), 2.32 (1H, dd, J
6.8, 14.2), 2.25–2.13 (3H, m), 2.08–1.96 (4H, m), 1.94–1.83 (1H, m),
1.79-1.65 (3H, m), 1.63–1.53 (2H, m), 1.46–1.17 (4H, m), 1.13 (3H, d, J
6.8), 0.98 (2H, t, J 8.5), and 20.01 (9H, s); 13C-NMR (C6D6, 100 MHz) d
201.5, 159.7, 138.7, 131.4, 129.4, 128.6, 127.9, 114.1, 108.9, 108.7, 108.5,
94.8, 78.3, 77.8, 73.8, 73.5, 73.0, 70.0, 68.5, 68.1, 67.2, 65.4, 54.9, 45.6,
40.1, 38.6, 35.9, 35.2, 34.0, 33.0, 32.5, 31.3, 30.3, 29.5, 20.6, 18.4, and 17.0;
IR (neat), nmax 2926, 2855, 1733, 1612, 1514, 1454, 1367, 1303, 1249,
1099, 1036, 984, 952, 861, 836, 749, and 698 cm21; FD-HR-MS: found:
796.4228, calcd. for C44H64O11Si (M+): 796.4218.
‡ SEM = 2,2-(trimethylsilyl)ethoxymethyl. TBS = tert-butyldimethyl-
silyl. MMTr = 4-methoxyphenyldiphenylmethyl. DMPI = Dess-Martin
periodinane {IUPAC name: 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benz-
iodoxol-3(1H)-one}. MPM = 4-methoxybenzyl.
Scheme 3 (a) 5, BuLi, THF, 278 °C, 30 min, then 4, 278 °C, 30 min; (b)
Swern oxidation; (c) (i) SmI2, MeOH, THF, 0 °C, 30 min, (ii) Al(Hg), THF–
H2O (10+1), 23 °C, 16 h (84% in 4 steps); (d) PPTS (cat.), MeOH–CH2Cl2
(1+50), 21 °C, 10.5 h (88%); (e) DMPI,‡ NaHCO3, CH2Cl2, 23 °C, 20 h
(99%); (f) 6, BuLi, Et2O, 278 °C, 30 min, then 7, 278 °C, 15 min; (g)
DMPI, NaHCO3, CH2Cl2, 23 °C, 11.5 h; (h) SmI2, MeOH, THF, 0 °C, 30
min (60% in 3 steps); (i) RuO2·H2O, NaIO4, CCl4–MeCN–pH 7 buffer
(1+1+1.5), 23 °C, 195 min (77%); (j) HF·py, MeCN, 24 °C, 7.5 h (83% after
one recycle).
1 For reviews on spiroketal synthesis see: A. F. Kluge, Heterocycles,
1986, 24, 1699; T. L. B. Boivin, Tetrahedron, 1987, 43, 3309; F. Perron
and K. F. Albizati, Chem. Rev., 1989, 89, 1617; V. Vaillancourt, N. E.
Pratt, F. Perron and K. F. Albizati, Total Synth. Nat. Prod., 1992, 8, 533;
M. A. Brimble and F. A. Far, Tetrahedron, 1999, 55, 7661.
2 F. Perron and K. F. Albizati, J. Org. Chem., 1989, 54, 2047; M. A.
Brimble and G. M. Williams, Tetrahedron Lett., 1990, 31, 3043; M. A.
Brimble and G. A. Williams, J. Org. Chem., 1992, 57, 5818; K. Horita,
S. Nagato, Y. Oikawa and O. Yonemitsu, Tetrahedron Lett., 1987, 28,
3253; D. R. Williams, P. A. Jass and R. D. Gaston, Tetrahedron Lett.,
1993, 34, 3231; G. J. McGarvey and M. W. Stepanian, Tetrahedron
Lett., 1996, 37, 5461; G. J. McGarvey, M. W. Stepanian, A. R. Bressette
and J. F. Ellena, Tetrahedron Lett., 1996, 37, 5465.
3 P. Delongchamps, Stereoelectronic Effects in Organic Chemistry,
Pergamon Press, Oxford, pp. 4–53, 1983.
4 D. Uemura, T. Chou, T. Haino, A. Nagatsu, S. Fukuzawa, S. Z. Zeng
and H. S. Chen, J. Am. Chem. Soc., 1995, 117, 1155; T. Chou, O. Kamo
and D. Uemura, Tetrahedron Lett., 1996, 37, 4023; T. Chou, T. Haino,
M. Kuramoto and D. Uemura, Tetrahedron Lett., 1996, 37, 4027.
5 J. A. McCauley, K. Nagasawa, P. A. Lander, S. G. Mischke, M. A.
Semones and Y. Kishi, J. Am. Chem. Soc., 1998, 120, 7647.
6 For synthetic studies see: T. Noda, A. Ishiwata, S. Uemura, S. Sakamoto
and M. Hirama, Synlett, 1998, 298; B. D. Suthers, M. F. Jacobs and W.
Kiching, Tetrahedron Lett., 1998, 39, 2621; A. Ishiwata, S. Sakamoto,
T. Noda and M. Hirama, Synlett, 1999, 692; A. Nitta, A. Ishikawa, T.
Noda and M. Hirama, Synlett, 1999, 695.
Scheme 4
7 T. Sugimoto, J. Ishihara and A. Murai, Tetrahedron Lett., 1997, 38,
7379.
mixture of 9, 10, and 1 was treated with HF·py in MeCN–H2O
(20+1) at 21 °C for 24 h, 1 was generated in 77% yield. The
exclusive formation of 1 seems to be reasonable judging from
the results of MM2* calculation using MacroModel 6.5 for the
relative energies of the compounds, which suggested that the
potential energy of 1 would be > 3.5 kcal mol21 lower than any
others. In addition, the axial preference of the C–O bond of the
cyclic acetal would be enhanced by the presence of an a-ketone
due to the cyclic stereoelectronic effect of p-electron donation.
The acetalization in THF proceeded under the kinetic control,
while the thermodynamic effect played an important role in the
case of MeCN. The difference between the selectivities in
MeCN and THF were induced by the solvation effect, which
appeared in the glycosidation, involving the intermediacy of the
acetonitrilium ion.15 Thus, the one-step assembling reaction of
the tetraketone to the complicated acetal was achieved to
provide selectively the pentacyclic compound in an excellent
8 T. Sugimoto, J. Ishihara and A. Murai, Synlett, 1999, 541.
9 A. Kamikawa, J. Ishihara and A. Murai, unpublished results.
10 The structure of 1 was determined by NMR spectroscopy (1H-,13C-
NMR, DQFCOSY, HMQC, HMBC, and NOESY spectra).
11 J. Ishihara, T. Sugimoto and A. Murai, Synlett, 1998, 603.
12 A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at
Oxygen, Springer-Verlag, Berlin, Heidelberg, New York, pp. 20–23,
1983.
13 G. A. Molander, Chem. Rev., 1992, 92, 29.
14 R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H. Fujioka,
W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi, M. J.
Martinelli, W. W. McWhorter, M. Mizuno, M. Nakata, A. E. Stutz, F. X.
Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J. Uenishi, J. B. White and
M. Yonaga, J. Am. Chem. Soc., 1989, 111, 7525.
15 P. Sinay and J. R. Pougny, Tetrahedron Lett., 1976, 4073; R. R. Schmidt
and J. Michel, Carbohydr. Chem., 1985, 4, 141; R. U. Lemieux and
R. M. Ratcliffe, Can. J. Chem., 1979, 57, 1244.
Chem. Commun., 2001, 1392–1393
1393