To probe the bifunctional activity of these ligands, the
addition of Et2Zn to benzaldehyde was selected for initial
study. When a â-aminoalkoxy zinc catalyst such as 3 is
employed, this reaction proceeds by dual activation of the
aldehyde electrophile and diethylzinc nucleophile (Figure
2).3b,c,6 In applying framework 1 to this reaction, an apical
catalyze the addition of Et2Zn to aldehydes with excellent
enantioselectivity, these catalysts are generally less reactive
than the titanium-based systems.6 Herein we report the
discovery of a new class of catalysts that demonstrate
excellent reactivity and good enantioselectivity in the absence
of Ti(OiPr)4.
As the first step toward development of this class of
catalysts, the nature of the tether for the Lewis base was
examined. The tether must be short and/or rigid enough to
prevent internal complexation to the metal. A number of
different tethers satisfy this criteria, leading to a variety of
useful bifunctional salens, two of which are shown below
(Figure 3).
Figure 2.
coordination site on the salen metal center could act as a
Lewis acid site to activate the aldehyde7 while the tethered
base could independently activate the Et2Zn nucleophile (4,
Figure 2).8
In the search for highly reactive Lewis acid catalysts for
this reaction, titanium complexes of chiral diols and bis-
(sulfonamide) ligands have proven the most successful to
date.9 One drawback of these systems is the requirement for
a stoichiometric amount of Ti(OiPr)4. Although various chiral
ligands (amino alcohols, diols, etc.) have been reported to
Figure 3.
The ease of preparation of the salen backbone lends itself
to the rapid modular construction of a number of bifunctional
ligands in which both the tether and diamine linker can be
varied. Achiral and racemic compounds of type 1 have
formerly been used as binucleating agents in the preparation
of bimetallic complexes10 and as ditopic ligands for salt
extraction.11 Salens 7, 8,12 and 9 can be synthesized in three
simple steps from phenol 10 (Scheme 1). The syntheses of
5 and 6 are somewhat longer, but similarly straightforward.13
(3) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987,
109, 5551-5553. (b) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J.
Am. Chem. Soc. 1986, 108, 6071-6072. (c) Noyori, R.; Kitamura, M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 49-69. (d) Kitajima, H.; Ito, K.;
Aoki, Y.; Katsuki, T. Bull. Chem. Soc. Jpn. 1997, 70, 207-217. (e) Ooi,
T.; Kondo, Y.; Maruoka, K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1183-
1184. (f) Sibi, M. P.; Cook, G. R.; Liu, P. Tetrahedron Lett. 1999, 40,
2477-2480. (g) Puigjaner, C.; Vidal-Ferran, A.; Moyano, A.; Pericas, M.
A.; Riera, A. J. Org. Chem. 1999, 64, 7902-7911. (h) Takamura, M.;
Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki, M. Chem. Pharm. Bull.
2000, 48, 1586-1592. (i) Hamashima, Y.; Sawada, D.; Nogami, H.; Kanai,
M.; Shibasaki, M. Tetrahedron, 2001, 57, 805-814. (j) Gamble, M. P.;
Smith, A. R. C.; Wills, M. J. Org. Chem. 1998, 63, 6068-6071.
(4) DiMauro, E. F.; Kozlowski, M. C. Org. Lett. 2001, 3, 1641-1644.
(5) A few examples of chiral salens with secondary functional groups
have been reported. Phosphines: (a) Quirmbach, M.; Kless, A.; Holz, J.;
Tararov, B.; Bo¨rner, A. Tetrahedron: Asymmetry 1999, 10, 1803-1811.
(b) Kless, A.; Kadyrov, R.; Bo¨rner, A.; Holz, J.; Kagan, H. B Tetrahedron
Lett. 1995, 36, 4601-4602. Phenol ethers: (c) Keller, F.; Rippert, A. J.
HelV. Chim. Acta 1999, 82, 125-137.
Scheme 1a
(6) For a recent review, see: (a) Pu, L.; Yu, H. Chem. ReV. 2001, 101,
757-824. (b) Soai, K.; Shibata, T. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
pp 911-922.
a (a) SnCl4, CH2O, nBu3N. (b) CH2O, morpholine, HOAc. (c)
diamine, EtOH.
(7) For previous applications of salen ligands as catalysts in the Et2Zn
addition to aldehydes, see ref 5c and the following: Cozzi, P. G.; Papa,
A.; Umani-Ronchi, A. Tetrahedron Lett. 1996, 37, 4613-4616.
(8) Bifunctional catalysts have been proposed in the Et2Zn additions with
binaphthyl-3, 3′-dicarboxamides. See ref 3d.
(9) (a) Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30,
1321-1323. (b) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M.
Tetrahedron 1994, 50, 4363-4384. (c) Takahashi, H.; Kawakita, T.;
Yoshioka, M.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1998, 30, 7095-
7098. (d) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi,
S. Tetrahedron 1992, 48, 5691-5700. (e) Pritchett, S.; Woodmansee, D.
H.; Gantzel, P.; Walsh, P. J. J. Am. Chem. Soc. 1998, 120, 6423-6424. (f)
Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. 2001, 40,
92-138.
The zinc complexes of ligands 5-914 (eq 1) were
examined as catalysts for the addition of Et2Zn to benz-
aldehyde (Table 1, eq 2). A comparison of the reactivity of
(10) (a) Liable-Sands, L. M.; Incarvito, C.; Rheingold, A. L.; Qin, C. J.;
Gavrilova, A. L.; Bosnich, B. Inorg. Chem. 2001, 40, 2147-2155. (b)
Adams, H.; Fenton, D. E.; Haque, S. R.; Heath, S. L.; Ohba, M. J. Chem.
Soc., Dalton Trans. 2000, 1849-1856. (c) De Angelis, S.; Solari, E.; Gallo,
E.; Floriani; C.; Chiesi-Villa, A.; Rizzoli, C. Inorg. Chem. 1996, 35, 5995-
6003. (d) Karunakaran, S.; Kandaswamy, M. J. Chem. Soc., Dalton Trans.
1995, 1851-1855.
3054
Org. Lett., Vol. 3, No. 19, 2001