10.1002/ejoc.201901468
European Journal of Organic Chemistry
COMMUNICATION
[5]
[6]
a) G. Said, S. Grippon, P. Kirkpatrick, Nat. Rev. Drug. Discov. 2012, 11,
185-186; b) H. Razavi, S. K. Palaninathan, E. T. Powers, R. L.
Wiseman, H. E. Purkey, N. N. Mohamedmohaideen, S. Deechongkit, K.
P. Chiang, M. T. A. Dendle, J. C. Sacchettini, J. W. Kelly, Angew.
Chem. Int. Ed. 2003, 42, 2758-2761.
would tautomerize to 1,2,4-benzoxadiazine F. By an
electrocyclic ring opening with the weak N-O bond being broken,
intermediate F converted to the ortho-benzoquinone imine G.[19]
Intermediate G would convert to benzimidamide intermediate H
with the presence of generated AcOH. Finally, an intramolecular
cyclization of intermediate H gave intermediate I, which could
a) D. Liu, H. Wang, H. Li, H. Zhang, Q. Liu, Z. Wang, X. Gan, J. Wu, Y.
Tian, H. Zhou, Dyes Pigm. 2017, 147, 378-384; b) A. Ghodbane, S.
D’Altério, N. Saffon, N. D. McClenaghan, L. Scarpantonio, P. Jolinat, S.
Fery-Forgues, Langmuir 2012, 28, 855-863; c) M. Taki, J. L. Wolford, T.
V. O'Halloran, J. Am. Chem. Soc. 2004, 126, 712-713; d) J. Seo, S.
Kim, S. Y. Park, J. Am. Chem. Soc. 2004, 126, 11154-11155; e) M. Cui,
M. Ono, H. Kimura, M. Ueda, Y. Nakamoto, K. Togashi, Y. Okamoto, M.
Ihara, R. Takahashi, B. Liu, H. Saji, J. Med. Chem. 2012, 55, 9136-
9145.
quickly convert to the target product 2b by an elimination.[15]
.
Conclusions
In summary,
a molecular I2-promoted transition-metal-free
protocol has been developed to construct 2-aryl benzoxazole
skeleton with reasonable yields from amidoximes. The
amidoxime substrates provided unique and efficient strategies
for converting readily available aniline and benzaldehyde
precursors into valuable chemicals. In addition, a series of 2-aryl
benzoxazoles with substituents at any positions of the ring were
obtained. A preliminary survey of reaction pathway disclosed
that this reaction might occur though a sequential oxidative
cyclization and ring contraction. Further studies to elucidate a
detailed mechanism for this protocol are currently underway in
our laboratory.
[7]
[8]
a) S. Haneda, Z. Gan, K. Eda, M. Hayashi, Organometallics 2007, 26,
6551-6555; b) A. K.-W. Chan, E. S.-H. Lam, A. Y.-Y. Tam, D. P.-K.
Tsang, W. H. Lam, M.-Y. Chan, W.-T. Wong, V. W.-W. Yam, Chem.
Eur. J. 2013, 19, 13910-13924.
a) D. W. Hein, R. J. Alheim, J. J. Leavitt, J. Am. Chem. Soc. 1957, 79,
427-429; b) M. Terashima, M. Ishii, Y. Kanaoka, Synthesis 1982, 6,
484-485; c) J. A. Seijas, M. P. Vázquez-Tato, M. R. Carballido-
Reboredo, J. Crecente-Campo, L. Romar-López, Synlett 2007, 2, 313-
317
[9]
a) Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hayashi, Org. Lett.
2003, 5, 3713-3715; b) O. Koleda, T. Broese, J. Noetzel, M. Roemelt, E.
Suna, R. Francke, J. Org. Chem. 2017, 82, 11669-11681; c) X. Meng,
Y. Wang, B. Chen, G. Chen, Z. Jing, P. Zhao, Org. Process Res. Dev.
2017, 21, 2018-2024; d) A. Patra, A. James, T. K. Das, A. T. Biju, J.
Org. Chem. 2018, 83, 14820-14826; e) J. Chang, K. Zhao, S. Pan,
Tetrahedron Lett. 2002, 43, 951-954; f) R. S. Varma, R. K. Saini, O.
Prakash, Tetrahedron Lett. 1997, 38, 2621-2622.
Experimental Section
Genaral Procedure: To a mixture of amidoximes 1 (1.0 mmol), iodine
(1.5 equiv.) and AcOK (4.0 equiv.) was added 1-methyl-2-pyrrolidinone
(NMP, 4.0 mL) under nitrogen atmosphere at room temperature. The
reaction temperature was raised to 120 oC for 1-2 h. When TLC shows
the complete disappearance of the amidoximes 1, the hot solution was
cooled to room temperature. The resulting reaction solution was
quenched with saturated Na2S2O3 aquesous (50 mL) and extracted with
EtOAc (3×20 mL). The extract was washed with brine and dried over
Na2SO4. The solvent was evaporated in vacuo and the residue was
purified by column chromatography on silica gel with ethyl
acetate/petroleum ether as an eluent to give the desired product 2.
[10]
a) R. Huisgen, H. König, Angew. Chem. 1957, 69, 268-268; b) R.
Huisgen, J. Sauer, Angew. Chem. 1960, 72, 91-108; c) R. Huisgen, H.
König, A. R. Lepley, Chem. Ber. 1960, 93, 1496-1506; d) J. H. Boyer, L.
R. Morgan, J. Am. Chem. Soc. 1958, 80, 2020-2021; e) J. F. Bunnett, J.
A. Skorcz, J. Org. Chem. 1962, 27, 3836-3843; f) J. F. Bunnett, B. F.
Hrutfiord, J. Am. Chem. Soc. 1961, 83, 1691-1697; g) R. D. Clark, J. M.
Caroon, J. Org. Chem. 1982, 47, 2804-2806; h) M. I. El-Sheikh, A.
Marks, E. R. Biehl, J. Org. Chem. 1981, 46, 3256-3259.
[11]
[12]
J. Peng, C. Zong, M. Ye, T. Chen, D. Gao, Y. Wang, C. Chen, Org.
Biomol. Chem. 2011, 9, 1225-1230.
a) J. Bonnamour, C. Bolm, Org. Lett. 2008, 10, 2665-2667; b) J.
Jadhav, V. Gaikwad, R. Kurane, R. Salunkhe, G. Rashinkar,
Tetrahedron 2013, 69, 2920-2926; c) J. I. Urzúa, R. Contreras, C. O.
Salas, R. A. Tapia, RSC Adv. 2016, 6, 82401-82408; d) T. Venu
Saranya, P. Rajan Sruthi, S. Anas, Synth. Commun. 2019, 49, 297-
307; e) A. Ahmed, R. Singha, J. K. Ray, Tetrahedron Lett. 2015, 56,
2167-2171; f) Y. Wang, C. Wu, S. Nie, D. Xu, M. Yu, X. Yao,
Tetrahedron Lett. 2015, 56, 6827-6832; g) G. Evindar, R. A. Batey, J.
Org. Chem. 2006, 71, 1802-1808; h) S. Ueda, H. Nagasawa, Angew.
Chem. Int. Ed. 2008, 47, 6411-6413; i) V. Kavala, D. Janreddy, M. J.
Raihan, C.-W. Kuo, C. Ramesh, C.-F. Yao, Adv. Synth. Catal. 2012,
354, 2229-2240; j) A. R. Hajipour, Z. Khorsandi, M. Mortazavi, H.
Farrokhpour, RSC Adv. 2015, 5, 107822-107828; k) P. Saha, M. A. Ali,
P. Ghosh, T. Punniyamurthy, Org. Biomol. Chem. 2010, 8, 5692-5699.
a) J. Yang, Tetrahedron 2019, 75, 2182-2187; b) B. Liu, J. Li, F. Song,
J. You, Chem. Eur. J. 2012, 18, 10830-10833; c) X.-B. Shen, Y. Zhang,
W.-X. Chen, Z.-K. Xiao, T.-T. Hu, L.-X. Shao, Org. Lett. 2014, 16,
1984-1987; d) S. Ranjit, X. Liu, Chem. Eur. J. 2011, 17, 1105-1108; e)
M. Zhang, S. Zhang, M. Liu, J. Cheng, Chem. Commun. 2011, 47,
11522-11524; f) F. Gao, B.-S. Kim, P. J. Walsh, Chem. Commun. 2014,
50, 10661-10664; g) T. Yamamoto, K. Muto, M. Komiyama, J. Canivet,
J. Yamaguchi, K. Itami, Chem. Eur. J. 2011, 17, 10113-10122; h) D. F.
Steinberg, M. C. Turk, D. Kalyani, Tetrahedron 2017, 73, 2196-2209; i)
N. Vodnala, R. Gujjarappa, A. K. Kabi, M. Kumar, U. Beifuss, C. C.
Malakar, Synlett 2018, 29, 1469-1478; j) W. Zhang, Q. Zeng, X. Zhang,
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (81671745).
Keywords: Amidoximes • 2-Aryl benzoxazoles • Iodine
promoted • Oxidative cyclization • Ring contraction
[1]
a) M. Ueki, K. Ueno, S. Miyadoh, K. Abe, K. Shibata, M. Taniguchi, S.
Oi, J. Antibiot. 1993, 46, 1089-1094; b) S. Sato, T. Kajiura, M. Noguchi,
K. Takehana, T. Kobayashi, T. Tsuji, J. Antibiot. 2001, 54, 102-104.
J. Nishiu, M. Ito, Y. Ishida, M. Kakutani, T. Shibata, M. Matsushita, M.
Shindo, Diabetes Obes. Metab. 2006, 8, 508-516.
[13]
[2]
[3]
a) L. Liza, B. Michael, C. Terri, P. Michael, R. Kathryn, H. Heather, Eur.
J. Pharmacol. 2006, 553, 146-148; b) Z. A. Hughes, F. Liu, B. J. Platt, J.
M. Dwyer, C. M. Pulicicchio, G. Zhang, L. E. Schechter, S.
Rosenzweig-Lipson, M. Day, Neuropharmacology 2008, 54, 1136-1142.
E. Lampa, R. A. Romano, L. Berrino, G. Tortora, R. D. Guglielmo, A.
Filippelli, B. Gentile, E. Marmo, Drugs Exp. Clin. Res. 1985, 11, 501-
509.
[4]
This article is protected by copyright. All rights reserved.