SCHEME 1
Electr op h ilic Am in a tion of 4-F lu or op h en ol
w ith Dia zen es: A Com p lete Rem ova l of th e
F lu or in e Atom †
Sergeja Bombek, Franc Pozˇgan, Marijan Kocˇevar, and
Slovenko Polanc*
Faculty of Chemistry and Chemical Technology,
University of Ljubljana, Asˇkercˇeva 5,
SI-1000 Ljubljana, Slovenia
drazides9 and other N-N-containing compounds,10 we
recently reported on the electrophilic amination of 4-h-
alophenols and 2,4-dihalophenols with diisopropyl diaz-
enedicarboxylate in the presence of ZrCl4 as a Lewis acid.
In several cases, the reactions led to a mixture of two
products that were aminated either at the ortho or at the
para position, with respect to the phenolic OH (Scheme
1).11 The formation of products bearing the corresponding
hydrazino functionality at position 4 indicated that the
slovenko.polanc@uni-lj.si
Received December 22, 2003
Abst r a ct : The electrophilic amination of 2-fluorophenol,
4-fluorophenol, and 2-chlorophenol was observed to occur as
a result of their treatment with diazenes 1-4 under mild
reaction conditions in the presence of ZrCl4. The products
originating from the 2-fluorophenol or 2-chlorophenol can
be considered as “normal” products of amination. On the
other hand, the 2-chloro-4-amino-substituted phenols ob-
tained from the 4-fluorophenol seem to be formed in a
process that involves an ipso amination, the complete
removal of the fluorine atom, and the introduction of the
chlorine atom.
(5) (a) Heiss, C.; Schlosser, M. Eur. J . Org. Chem. 2003, 447-451.
(b) Rausis, T.; Schlosser, M. Eur. J . Org. Chem. 2002, 3351-3358. (c)
Bobbio, C.; Schlosser, M. Eur. J . Org. Chem. 2001, 4533-4536. (d)
Schlosser, M.; Castagnetti, E. Eur. J . Org. Chem. 2001, 3991-3997.
(e) Mongin, F.; Marzi, E.; Schlosser, M. Eur. J . Org. Chem. 2001, 2771-
2777. (f) Marzi, E.; Bigi, A.; Schlosser, M. Eur. J . Org. Chem. 2001,
1371-1376. (g) Mongin, F.; Desponds, O.; Schlosser, M. Tetrahedron
Lett. 1996, 37, 2767-2770.
(6) See also: (a) Eskildsen, J .; Østergaard, N.; Vedsø, P.; Begtrup,
M. Tetrahedron 2002, 58, 7635-7644. (b) Sammakia, T.; Stangeland,
E. L.; Whitcomb, M. C. Org. Lett. 2002, 4, 2385-2388. (c) Lukevics,
E.; Arsenyan, P.; Belyakov, S.; Popelis, J .; Pudova, O. Tetrahedron Lett.
2001, 42, 2039-2041. (d) Collins, I. J . Chem. Soc., Perkin Trans. 1
2000, 2845-2861. (e) Mattson, R. J .; Sloan, C. P.; Lockhart, C. C.; Catt,
J . D.; Gao, Q.; Huang, S. J . Org. Chem. 1999, 64, 8004-8007. (f)
Consiglio, G.; Spinelli, D.; Dell’Erba, C.; Novi, M.; Petrillo, G. Gazz.
Chim. Ital. 1997, 127, 753-769. (g) Bjork, P.; Malm, J .; Hornfeldt, A.
B.; Gronowitz, S. Heterocycles 1997, 44, 237-253. (h) Giumanini, A.
G.; Verardo, G.; Geatti, P.; Strazzolini, P. Tetrahedron 1996, 52, 7137-
7148. (i) Frohlich, J .; Hametner, C.; Kalt, W. Monatsh. Chem. 1996,
127, 325-330. (j) Frohlich, J .; Hametner, C. Monatsh. Chem. 1996,
127, 435-443. (k) Frohlich, J . Bull. Soc. Chim. Belg. 1996, 105, 615-
634. (l) Comins, D. L.; Saha, J . K. Tetrahedron Lett. 1995, 36, 7995-
7998. (m) Belohradsky, M.; Holy, P.; Zavada, J . J . Chem. Soc., Perkin
Trans. 2 1995, 1853-1856. (n) Bury, P.; Hareau, G.; Kocien´ski, P.;
Dhanak, D. Tetrahedron 1994, 50, 8793-8808. (o) Hawkins, D. W.;
Iddon, B.; Longthorne, D. S.; Rosyk, P. J . J . Chem. Soc., Perkin Trans.
1 1994, 2735-2743.
It has been known for 50 years that a halogen atom
on the thiophene ring can migrate in the presence of a
strong base.1 A similar observation was reported for the
case of halogenated benzenes by Wotiz and Huba.2 This
transformation, also known as the “halogen dance”, was
later thoroughly investigated by several groups.3-6 In
contrast, acid-promoted halogen migration rarely occurs
with aromatic molecules and is limited to bromine7 and
iodine.8 As a part of our continuing interest in hy-
† Dedicated to Professor Sa´ndor Antus, University of Debrecen, on
the occasion of his 60th birthday.
(1) Vaitiekunas, A.; Nord, F. F. J . Am. Chem. Soc. 1953, 75, 1764-
1768.
(2) Wotiz, J . H.; Huba, F. J . Org. Chem. 1959, 24, 595-598.
(3) For reviews, see: (a) Schlosser, M. Eur. J . Org. Chem. 2001,
3975-3984. (b) Smith, M. B.; March, J . In March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structures, 5th ed.; Wiley:
New York, 2001; p 735. (c) Que´guiner, G.; Marsais, F.; Snieckus, V.;
Epsztajn, J . Adv. Heterocycl. Chem. 1991, 52, 187-304. (d) Bunnett,
J . F. Acc. Chem. Res. 1972, 5, 139-147.
(4) (a) Lazaar, J .; Rebstock, A.-S.; Mongin, F.; Godard, A.; Tre´court,
F.; Marsais, F.; Que´guiner, G. Tetrahedron 2002, 58, 6723-6728. (b)
Toudic, F.; Ple, N.; Turck, A.; Que´guiner, G. Tetrahedron 2002, 58,
283-293. (c) Godard, A.; Rocca, P.; Guillier, F.; Duvey, G.; Nivoliers,
F.; Marsais, F.; Que´guiner, G. Can. J . Chem. 2001, 79, 1754-1761.
(d) Arzel, E.; Rocca, P.; Grellier, P.; Labae¨ıd, M.; Frappier, F.; Gue´ritte,
F.; Gaspard, C.; Marsais, F.; Godard, A.; Que´guiner, G. J . Med. Chem.
2001, 44, 949-960. (e) Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.;
Que´guiner, G. Tetrahedron 1999, 55, 12149-12156. (f) Arzel, E.; Rocca,
P.; Marsais, F.; Godard, A.; Que´guiner, G. Heterocycles 1999, 50, 215-
226. (g) Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.; Que´guiner, G.
Tetrahedron Lett. 1998, 39, 6465-6466. (h) Ple, N.; Turck, A.; Heyn-
derickx, A.; Que´guiner, G. Tetrahedron 1998, 54, 9701-9710. (i) Ple,
N.; Turck, A.; Heynderickx, A.; Que´guiner, G. Tetrahedron 1998, 54,
4899-4812. (j) Trecourt, F.; Gervais, B.; Mallet, M.; Que´guiner G. J .
Org. Chem. 1996, 61, 1673-1676. (k) Cochennec, C.; Rocca, P.; Marsais,
F.; Godard, A.; Que´guiner, G. Synthesis 1995, 321-324. (l) Guillier,
F.; Nivoliers, F.; Godard, A.; Marsais, F.; Que´guiner, G. Tetrahedron
Lett. 1994, 35, 6489-6492. (m) Ple, N.; Turck, A.; Couture, K.;
Que´guiner, G. Tetrahedron 1994, 50, 10299-10308. (n) Rocca, P.;
Cochennec, C.; Marsais, F.; Thomas-dit-dumont, L.; Mallet, M.; Godard,
A.; Que´guiner, J . Org. Chem. 1993, 58, 7832-7838. (o) Marsais, F.;
Pineau, P.; Nivolliers, F.; Mallet, M.; Turck, A.; Godard, A.; Que´guiner,
J . Org. Chem. 1992, 57, 565-573.
(7) (a) Giles, R. G. F.; Green, I. R.; Knight, L. S.; Son, V. R. L.; Yorke,
S. C. J . Chem. Soc., Perkin Trans. 1 1994, 865-873. (b) Giles, R. G.
F.; Green, I. R.; Knight, L. S.; Son, V. R. L.; Mitchell, P. R. K.; Yorke,
S. C. J . Chem. Soc., Perkin Trans. 1 1994, 853-857. (c) J acquesy, J .-
C.; J ouannetaud, M.-P. Tetrahedron Lett. 1982, 23, 1673-1676. (d)
Press, J . B.; Eudy, N. H. J . Heterocycl. Chem. 1981, 18, 1261-1262.
(e) Brittain, J . M.; de la Mare, P. B. D.; Newman, P. A. Tetrahedron
Lett. 1980, 21, 4111-4112.
(8) (a) Muramoto, Y.; Asakura, H.; Suzuki, H. Nippon Kagaku Kaishi
1992, 172-178. (b) Butler, A. R.; Sanderson, A. P. J . Chem. Soc., Perkin
Trans. 2 1972, 989-992.
(9) (a) Pozˇgan, F.; Polanc, S.; Kocˇevar, M. Synthesis 2003, 2349-
2352. (b) Pozˇgan, F.; Polanc, S.; Kocˇevar, M. Heterocycles 2001, 54,
1011-1019. (c) Kafka, S.; Trebsˇe, P.; Polanc, S.; Kocˇevar, M. Synlett
2000, 254-256. (d) Polanc, S. In Targets in Heterocyclic Systems.
Chemistry and Properties; Attanasi, O. A., Spinelli D., Eds.; Societa`
Chimica Italiana: Rome, 2000; Vol. 3 (1999), pp 33-91. (e) Sˇtefane,
B.; Kocˇevar, M.; Polanc, S. Tetrahedron Lett. 1999, 40, 4429-4432. (f)
Kepe, V.; Pozˇgan, F.; Golobicˇ, A.; Polanc, S.; Kocˇevar, M. J . Chem. Soc.,
Perkin Trans. 1 1998, 2813-2816. (g) Kocˇevar, M.; Mihorko, P.; Polanc,
S. J . Org. Chem. 1995, 60, 1466-1469.
(10) (a) Bombek, S.; Lenarsˇicˇ, R.; Kocˇevar, M.; Polanc, S. Synlett
2001, 1237-1240. (b) Sˇtefane, B.; Cˇ ernigoj, U.; Kocˇevar, M.; Polanc,
S. Tetrahedron Lett. 2001, 42, 6659-6662. (c) Kosˇmrlj, J .; Kocˇevar,
M.; Polanc, S. J . Chem. Soc., Perkin Trans. 1 1998, 3917-3919. (d)
Sˇtefane, B.; Kocˇevar, M.; Polanc, S. J . Org. Chem. 1997, 62, 7165-
7169. (e) Kosˇmrlj, J .; Kocˇevar, M.; Polanc, S. Synlett 1996, 652-654.
(11) Bombek, S.; Lenarsˇicˇ, R.; Kocˇevar, M.; Saint-J almes, L.;
Desmurs, J .-R.; Polanc, S. Chem. Commun. 2002, 1494-1495.
10.1021/jo035856b CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/24/2004
2224
J . Org. Chem. 2004, 69, 2224-2227