Journal of Agricultural and Food Chemistry
Article
promiscuity of a regio- and stereospecific C-glycosyltransferase from
(32) Homepage of the UGT Nomenclature Committee. http://
Mangifera indica. Angew. Chem., Int. Ed. 2015, 54, 12678−12682.
̈
(14) Meißner, D.; Albert, A.; Bottcher, C.; Strack, D.; Milkowski, C.
(33) Kubo, A.; Arai, Y.; Nagashima, S.; Yoshikawa, T. Alteration of
sugar donor specificities of plant glycosyltransferases by a single point
mutation. Arch. Biochem. Biophys. 2004, 429, 198−203.
(34) Beninger, G. W.; Abou-Zaid, M. M.; Kistner, A. L.; Hallett, R.
H.; Iqbal, M. J.; Grodzinski, B.; Hall, J. C. A flavanone and two
phenolic acids from Chrysanthemum morifolium with phytotoxic and
insect growth regulating activity. J. Chem. Ecol. 2004, 30, 589−608.
(35) Koeller, K. M.; Wong, C. H. Synthesis of complex
carbohydrates and glycoconjugates: enzyme-based and programmable
one-pot strategies. Chem. Rev. 2000, 100, 4465−4493.
(36) George Thompson, A. M.; Iancu, C. V.; Neet, K. E.; Dean, J.
V.; Choe, J. Y. Differences in salicylic acid glucose conjugations by
UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci. Rep. 2017, 7,
46629.
The role of UDP-glucose: hydroxycinnamate glucosyltransferases in
phenylpropanoid metabolism and the response to UV-B radiation in
Arabidopsis thaliana. Planta 2008, 228, 663−674.
(15) Lunkenbein, S.; Bellido, M.; Aharoni, A.; Salentijn, E. M.;
Kaldenhoff, R.; Coiner, H. A.; Munoz-Blanco, J.; Schwab, W.
̃
Cinnamate metabolism in ripening fruit. Characterization of a
UDP-glucose: cinnamate glucosyltransferase from strawberry. Plant
Physiol. 2006, 140, 1047−1058.
(16) Milkowski, C.; Baumert, A.; Strack, D. Cloning and
heterologous expression of a rape cDNA encoding UDP-glucose:
sinapate glucosyltransferase. Planta 2000, 211, 883−886.
(17) Mittasch, J.; Strack, D.; Milkowski, C. Secondary product
glycosyltransferases in seeds of Brassica napus. Planta 2007, 225, 515−
522.
(37) Gantt, R. W.; Peltier-Pain, P.; Cournoyer, W. J.; Thorson, J. S.
Using simple donors to drive the equilibria of glycosyltransferase-
catalyzed reactions. Nat. Chem. Biol. 2011, 7, 685−691.
(38) Chen, R.; Zhang, H.; Zhang, G.; Li, S.; Zhang, G.; Zhu, Y.; Liu,
J.; Zhang, C. Characterizating amosamine biosynthesis in amicetin
reversible retaining glycosyltransferase. J. Am. Chem. Soc. 2013, 135,
12152−12155.
(39) Xie, K.; Chen, R.; Li, J.; Wang, R.; Dou, X.; Dai, J. Exploring
the catalytic promiscuity of a new glycosyltransferase from Carthamus
tinctorius. Org. Lett. 2014, 16, 4874−4877.
̈
̈
(18) Mittasch, J.; Bottcher, C.; Frolova, N.; Bonn, M.; Milkowski, C.
Identification of UGT84A13 as a candidate enzyme for the first
committed step of gallotannin biosynthesis in pedunculate oak
(Quercus robur). Phytochemistry 2014, 99, 44−51.
(19) Cui, L.; Yao, S.; Dai, X.; Yin, Q.; Liu, Y.; Jiang, X.; Wu, Y.;
Qian, Y.; Pang, Y.; Gao, L.; Xia, T. Identification of UDP-
glycosyltransferases involved in the biosynthesis of astringent taste
compounds in tea (Camellia sinensis). J. Exp. Bot. 2016, 67, 2285−
2297.
(20) Ono, N. N.; Qin, X.; Wilson, A. E.; Li, G.; Tian, L. Two
UGT84 family glycosyltransferases catalyze a critical reaction of
hydrolyzable Tannin biosynthesis in Pomegranate (Punica granatum).
PLoS One 2016, 11, No. e0156319.
(21) Taguchi, G.; Ubukata, T.; Hayashida, N.; Yamamoto, H.;
Okazaki, M. Cloning and characterization of a glucosyltransferase that
reacts on 7-hydroxyl group of flavonol and 3-hydroxyl group of
coumarin from tobacco cells. Arch. Biochem. Biophys. 2003, 420, 95−
102.
(22) Nagatoshi, M.; Terasaka, K.; Owaki, M.; Sota, M.; Inukai, T.;
Nagatsu, A.; et al. UGT75L6 and UGT94E5 mediate sequential
glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett.
2012, 586, 1055−1061.
(23) Tian, L.; Blount, J. W.; Dixon, R. A. Phenylpropanoid
glycosyltransferases from osage orange (Maclura pomifera) fruit.
FEBS Lett. 2006, 580, 6915−6920.
(24) Sun, Y.; Chen, Z.; Li, J.; Li, J.; Lv, H.; Yang, J.; Li, W.; Xie, D.;
Xiong, Z.; Zhang, P.; Wang, Y. Diterpenoid UDP-glycosyltransferases
from Chinese sweet tea and ashitaba complete the biosynthesis of
Rubusoside. Mol. Plant 2018, 11, 1308−1311.
(25) Li, J.; Yu, D. Q. Two new constituents from Erigeron
breviscapus. J. Asian Nat. Prod. Res. 2013, 15, 969−973.
(26) Qu, J.; Wang, Y.; Luo, G.; Wu, Z. Identification and
determination of glucuronides and their aglycones in Erigeron
breviscapus by liquid chromatography−tandem mass spectrometry. J.
Chromatogr. A 2001, 928, 155−162.
(27) Yang, Y.; Wang, H. M.; Tong, Y. F.; Liu, M. Z.; Cheng, K. D.;
Wu, S.; Wang, W. Systems metabolic engineering of Escherichia coli to
enhance the production of flavonoid glucuronides. RSC Adv. 2016, 6,
33622−33630.
(28) He, Z.; Zhang, H.; Gao, S.; Lercher, M. J.; Chen, W. H.; Hu, S.
Evolview v2: an online visualization and management tool for
customized and annotated phylogenetic trees. Nucleic Acids Res. 2016,
44, W236−W241.
(29) Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S.
MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol.
Biol. Evol. 2013, 30, 2725−2729.
(30) Robert, X.; Gouet, P. Deciphering key features in protein
structures with the new ENDscript server. Nucleic Acids Res. 2014, 42,
W320−W324.
(31) Bradford, M. M. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle
of protein-dye binding. Anal. Biochem. 1976, 72, 248−254.
H
J. Agric. Food Chem. XXXX, XXX, XXX−XXX