ChemComm
Communication
Table 1 Rhodium-catalyzed hydroformylation of 1-decene in the presence of
various ligand–CD couplesa
2 For selected reviews, see: (a) M. J. Wilkinson, P. W. N. M. van Leeuwen
and J. N. H. Reek, Org. Biomol. Chem., 2005, 3, 2371; (b) B. Breit, Angew.
`
Chem., Int. Ed., 2005, 44, 6816; (c) D. M. Vriezema, M. C. Aragones,
J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan and R. J. M. Nolte,
Chem. Rev., 2005, 105, 1445; (d) A. Lu¨tzen, Angew. Chem., Int. Ed., 2005,
44, 1000; (e) D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond,
Acc. Chem. Res., 2005, 38, 351; ( f ) T. S. Koblenz, J. Wassenaar and
J. N. H. Reek, Chem. Soc. Rev., 2008, 37, 247; (g) M. Yoshizawa,
J. K. Klosterman and M. Fujita, Angew. Chem., Int. Ed., 2009, 48, 3418;
(h) J. Meeuwissen and J. N. H. Reek, Nat. Chem., 2010, 2, 615;
(i) S. Carboni, C. Gennari, L. Pignataro and U. Piarulli, Dalton Trans.,
2011, 40, 4355; ( j) T. R. Ward, Acc. Chem. Res., 2011, 44, 47.
Entry
Ligand
CD
Cb (%)
Sc (%)
l/b
1
2
3
4
5
6
TPPTS
1
TPPTS
1
TPPTS
1
(-)
(-)
b-CD
b-CD
CD-dim
CD-dim
5
2
45
40
49
99
65
69
89
77
78
94
2.7
3.1
1.9
2.2
2.0
2.1
3 For selected examples in organic medium, see: (a) M. L. Merlau,
M. Del Pilar Mejia, S. T. Nguyen and J. T. Hupp, Angew. Chem., Int.
Ed., 2001, 40, 4239; (b) B. Breit and W. Seiche, J. Am. Chem. Soc., 2003,
¨
125, 6608; (c) V. F. Slagt, M. Roder, P. C. J. Kamer, P. W. N. M. van
a
Experimental conditions: Rh(acac)(CO)2 = 21 mmol (1 eq.), ligand =
105 mmol (5 eq.), CD cavity = 210 mmol (10 eq.), substrate = 10.5 mmol
(500 eq.), 6 mL water, 80 1C, 50 bar CO/H2 (1/1), 1500 rpm, reaction time =
Leeuwen and J. N. H. Reek, J. Am. Chem. Soc., 2004, 126, 4056;
(d) X. B. Jiang, L. Lefort, P. E. Goudriaan, A. H. M. de Vries, P. W. N. M.
van Leeuwen, J. G. de Vries and J. N. H. Reek, Angew. Chem., Int. Ed.,
2006, 45, 1223; (e) S. Das, C. D. Incarvito, R. H. Crabtree and G. W.
Brudvig, Science, 2006, 312, 1941; ( f ) M. Yoshizawa, M. Tamura and
M. Fujita, Science, 2006, 312, 251; (g) H. Gulys, J. Benet-Buchholz,
E. C. Escudero-Adan, Z. Freixa and P. W. N. M. van Leeuwen, Chem.–
Eur. J., 2007, 13, 3424; (h) T. Smejkal and B. Breit, Angew. Chem., Int.
Ed., 2008, 47, 311; (i) S. Zhu, J. V. Ruppel, H. Lu, L. Wojtas and
X. P. Zhang, J. Am. Chem. Soc., 2008, 130, 5042; ( j) L. Diab, T. Smejkal,
b
c
9 h. C = 1-decene conversion. S = aldehyde selectivity.
(l/b) was around 2. This value is classical for hydroformylation
experiments performed in the presence of b-CD derivatives.13
Interestingly, the catalytic activity depended on the ligand–CD
combinations. Indeed, the [Rh–TPPTS–b-CD], [Rh–1–b-CD] and
[Rh–TPPTS–CD-dim] combinations nearly gave the same conver-
sions whereas the conversion was more than two times higher
for [Rh–1–CD-dim] (compare entries 3, 4 and 5 with entry 6).
More precisely, extra-conversions observed with the [Rh–1–CD-
dim] system were equal to 148%, 120% and 102% compared to
the [Rh–1–b-CD], [Rh–TPPTS–b-CD] and [Rh–TPPTS–CD-dim]
systems, respectively. Actually, the role played by the CD cavity
is different in the case of [Rh–1–CD-dim] compared to the three
other combinations. For the system [Rh–1–b-CD], [Rh–TPPTS–b-
CD] and [Rh–TPPTS–CD-dim], the three values of conversion
were similar and the CD moiety simply acted as a mass transfer
agent by forming an inclusion complex with 1-decene.12 The
extra-conversions observed in the case of [Rh–1–CD-dim] can be
easily explained by the anchoring of both the catalytic species
and the substrate on the CD-dim platform by supramolecular
interactions. So, 1-decene is in close proximity to the rhodium
species facilitating the catalytic act and leading to an extra-
conversion. The same experiments were performed with 1-hexa-
decene as a substrate and the same positive effect was observed.
Indeed, extra-conversions with the [Rh–1–CD-dim] system com-
pared to the other [Rh–1–b-CD], [Rh–TPPTS–b-CD] and [Rh–
TPPTS–CD-dim] systems were equal to 96%, 120% and 165%,
respectively (see ESI‡).
ˇ
ˇ
J. Geier and B. Breit, Angew. Chem., Int. Ed., 2009, 48, 8022;
(k) L. Pignataro, B. Lynikaite, J. Cvengros, M. Marchini, U. Piarulli
and C. Gennari, Eur. J. Org. Chem., 2009, 2539; (l) H. J. Yoon,
J. Kuwabara, J. H. Kim and C. A. Mirkin, Science, 2010, 330, 66;
(m) P. Dydio, W. I. Dzik, M. Lutz, B. de Bruin and J. N. H. Reek, Angew.
Chem., Int. Ed., 2011, 50, 396; (n) P. Dydio, C. Rubay, T. Gadzikwa,
M. Lutz and J. N. H. Reek, J. Am. Chem. Soc., 2011, 133, 17176.
4 For selected examples in aqueous medium, see: (a) H. Yamaguchi,
T. Hirano, H. Kiminami, D. Taura and A. Harada, Org. Biomol. Chem.,
2006, 4, 3571; (b) C. Machut, J. Patrigeon, S. Tilloy, H. Bricout, F. Hapiot
and E. Monflier, Angew. Chem., Int. Ed., 2007, 46, 3040; (c) P. J. Deuss,
G. Popa, C. H. Botting, W. Laan and P. C. J. Kamer, Angew. Chem., Int.
Ed., 2010, 49, 5315; (d) C. J. Brown, G. M. Miller, M. W. Johnson,
R. G. Bergman and K. N. Raymond, J. Am. Chem. Soc., 2011, 133, 11964.
5 J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley, Chichester,
2000.
6 (a) R. Breslow and L. E. Overman, J. Am. Chem. Soc., 1970, 92, 1075;
(b) R. Breslow and B. Zhang, J. Am. Chem. Soc., 1992, 114, 5882;
(c) R. Breslow and B. Zhang, J. Am. Chem. Soc., 1994, 116, 7893;
(d) R. Breslow, Acc. Chem. Res., 1995, 28, 146; (e) R. Breslow,
X. Zhang, R. Xu, M. Maletic and R. Merger, J. Am. Chem. Soc.,
1996, 118, 11678; ( f ) R. Breslow, X. Zhang and Y. Huang, J. Am.
Chem. Soc., 1997, 119, 4535; (g) R. Breslow and B. Zhang, J. Am.
Chem. Soc., 1997, 119, 1676; (h) R. Breslow and S. D. Dong, Chem.
Rev., 1998, 98, 1997; (i) J. Yang and R. Breslow, Angew. Chem., Int.
Ed., 2000, 39, 2692; ( j) J. Yang, B. Gabriele, S. Belvedere, Y. Huang
and R. Breslow, J. Org. Chem., 2002, 67, 5057; (k) R. Breslow,
J. M. Yan and S. Belvedere, Tetrahedron Lett., 2002, 43, 363;
(l) Z. Fang and R. Breslow, Bioorg. Med. Chem. Lett., 2005, 15, 5463.
7 M. Ferreira, H. Bricout, F. Hapiot, A. Sayede, S. Tilloy and
E. Monflier, ChemSusChem, 2008, 1, 631.
8 K. A. Connors, Binding Constants, Wiley, New York, 1987.
9 Note that [Rh(COD)(1)2+, BF4À] could also formed a 1 : 1 inclusion
complex with CD-dim by including each of its both phosphanes 1 in
each CD-dim cavity. This possibility was fully excluded by molecular
dynamics simulations which showed that this double inclusion
phenomenon is a very unlikely event (see ESI‡).
10 Although the ratio 1-decene/catalyst [Rh–1] is high and equal to 500,
1-decene is not a competitor for the catalyst into CD-dim cavities
since its water-solubility is only equal to 10 mM at 80 1C against
3.5 mM for the catalyst concentration (see ESI‡ for data).
To summarise, we have elaborated a supramolecular reac-
tion platform based on a CD dimer able to simultaneously host
the substrate and the catalyst. Schematically, the catalyst was
included inside one cavity while the substrate was included in
the other. The proximity between the catalyst and the substrate
allowed reaching higher catalytic activities than those reported
for classical systems based on CD. We are currently further
exploring the scope of this new class of catalyst.
ˆ
11 (a) E. G. Kuntz, CHEMTECH, 1987, 570; (b) E. G. Kuntz, Rhone–
The program ANR CP2D 2009 is acknowledged for financial
support.
¨
Poulenc, French Patent, 2366237, 1976; (c) R. Gartner, B. Cornils,
H. Springer and P. Lappe, DE Pat, 3235030, 1982.
12 Note that NMR experiments clearly demonstrated that b-CD or CD-dim
+
was unable to form an inclusion complex with [Rh(COD)(TPPTS)2
,
Notes and references
BF4À] (see ESI‡).
1 P. W. N. M. van Leeuwen, Supramolecular Catalysis, Wiley-VCH, 13 F. Hapiot, L. Leclercq, N. Azaroual, S. Fourmentin, S. Tilloy and
Weinheim, 2008.
E. Monflier, Curr. Org. Synth., 2008, 5, 162.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.