J. Cossy et al. / Tetrahedron Letters 42 (2001) 5705–5707
5707
1
group was determined by examination of the H NMR
coupling constants between the C-4 and C-5 protons.14
Reduction of (−)-7 with n-Bu3SnH (1.1 equiv., toluene,
reflux, 2h)inthepresenceofacatalyticamountofAIBN15
gavetheaminoester(−)-8in71%yield. Finally, theknown
precursor (−)-916 of the (−)-paroxetine was obtained by
reducing (−)-8 by LAH (2 equiv., THF, 0°C to rt, 50 min)
in quantitative yield (Scheme 3).
127941; (h) Sugi, K.; Itaya, N.; Katsura, T.; Igi, M.;
Yamazaki, S.; Ishibashi, T.; Yamaoka, T.; Kawada, Y.;
Tagami, Y. Eur. Patent 0812827 A1, 1997; Chem. Abstr.
1998, 128, 75308; (i) Adger, B. M.; Potter, G. A.; Fox, M.
E. WO Patent 9724323, 1997; Chem. Abstr. 1997, 127,
149075; (j) Engelstoft, M.; Hansen, J. B. Acta Chem. Scand.
1996, 50, 164–169; (k) Zepp, C. M.; Gas, Y.; Heefner, D.
L. US Patent 5,258,517, 1993; Chem. Abstr. 1994, 120,
217289; (l) Willcocks, K.; Barnes, R. D.; Rustidge, D. C.;
Tidy, D. J. D. J. Labelled Compd. Radiopharm. 1993, 33,
783–794; (m) Christensen, J. A.; Squires, R. F. US Patent
4,007,196, 1977; Chem. Abstr. 1974, 81, 152011; (n) Stemp,
J. A.; Miller, D.; Martin, R. T. Eur. Patent 0190496, 1985.
7. Cossy, J.; Dumas, C.; Gomez Pardo, D. Eur. J. Org. Chem.
1999, 1693–1699 and references cited therein.
Since the piperidine (−)-9 has been converted into (−)-
paroxetine,6a the present transformation of the known
bicyclic lactam (+)-2 into the aminoalcohol (−)-9 (seven
steps, 25% overall yield) constitutes a new formal synthe-
sis of (−)-paroxetine.
8. (a) Cossy, J.; Dumas, C.; Michel, P.; Gomez Pardo, D.
Tetrahedron Lett. 1995, 36, 549–552; (b) Cossy, J.; Dumas,
C.; Gomez Pardo, D. Synlett 1997, 905–906; (c) Cossy, J.;
Dumas, C.; Gomez Pardo, D. Bioorg. Med. Chem. Lett.
1997, 7, 1343–1344; (d) Wilken, J.; Kossenjans, M.; Saak,
W.; Haase, D.; Pohl, S.; Martens, J. Liebigs Ann. 1997,
573–579; (e) Langlois, N.; Calvez, O. Synth. Commun. 1998,
28, 4471–4477; (f) Davis, P. W.; Osgood, S. A.; He´bert, N.;
Sprankle, K. G.; Swayze, E. E. Biotechnol. Bioeng. 1999,
61, 143–154; (g) Michel, P.; Rassat, A. J. Org. Chem. 2000,
65, 2572–2573.
Our work demonstrates that trans-3,4-disubstituted pipe-
ridinescanbeobtainedwithhighstereoselectivityemploy-
ing a stereospecific ring expansion applied to prolinol
which uses a mesyl chloride–Et3N process and a n-
Bu3SnHmediated reduction of3-chloropiperidine. Appli-
cation of this procedure to other complex products is
currently underway.
Acknowledgements
The authors would like to thank Rhoˆne-Poulenc-Rhodia
for financial support and Dr. Marvin S. Yu (Smithkline
Beecham) for sending us the 1H NMR spectra of
compound (−)-9. One of us, O.M., thanks the MRET for
a grant.
9. Calvez, O.; Chiaroni, A.; Langlois, N. Tetrahedron Lett.
1998, 39, 9447–9450 and references cited therein.
10. Thottathil, J. K.; Moniot, J. L.; Mueller, R. H.; Wong, M.
K. Y.; Kissick, T. P. J. Org. Chem. 1986, 51, 3140–3143.
For a review on pyroglutamic acid as building block in
asymmetric synthesis, see: Na`jera, C.; Yus, M. Tetrahedron:
Asymmetry 1999, 8, 2245–2303.
References
11. Bailey, J. H.; Cherry, D. T.; Crapnell, K. M.; Moloney, M.
G.; Shim, S. B. Tetrahedron 1997, 53, 11731–11744.
1. Robertson, D. W.; Krushinski, J. H.; Fuller, R. W.;
Leander, J. D. J. Med. Chem. 1988, 31, 1412–1417.
2. Fontenla, J. A.; Osuna, J.; Rosa, E.; Castro, M. E.; Ferreiro,
T. G.; Loza-Garcia, I.; Calleja, J. M.; Sanz, F.; Rodriguez,
J.; Ravina, E.; Fueyo, J.; Masaguer, C. F.; Vidal, A.; de
Ceballos, M. L. J. Med. Chem. 1994, 37, 2564–2573.
3. Lomenzo, S. A.; Izenwasser, S.; Gerdes, R. M.; Katz, J.
L.; Kopajtic, T.; Trudell, M. L. Bioorg. Med. Chem. Lett.
1999, 9, 3273–3276.
4. Mathis, C. A.; Gerdes, J. M.; Enas, J. D.; Whitney, J. M.;
Taylor, S. E.; Zhang, Y.; McKenna, D. J.; Havlik, S.;
Peroutka, S. J. J. Pharm. Pharmacol. 1992, 44, 801–805.
5. Gunasekara, N. S.; Noble, S.; Benfield, P. Drugs 1998, 55,
85–120.
6. For other asymmetric synthesis of paroxetine see: (a) Liu,
L. T.; Hong, P.-C.; Huang, H.-L.; Chen, S.-F.; Wang, C.-L.
L.; Wen, Y.-S. Tetrahedron: Asymmetry 2001, 12, 419–426;
(b) Johnson, A. J.; Curtis, M. D.; Beak, P. J. Am. Chem.
Soc. 2001, 123, 1004–1005; (c) Yu, M. S.; Lantos, I.; Peng,
Z.-Q.; Yu, J.; Cacchio, T. Tetrahedron Lett. 2000, 41,
5647–5651; (d) Amat, M.; Bosch, J.; Hidalgo, J.; Canto,
M.; Pe´rez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco,
M.; Luque, J. J. Org. Chem. 2000, 65, 3074–3084; (e)
Murthy, K. S. K.; Rey, A. W. WO Patent 9907680, 1999;
Chem. Abstr. 1999, 130, 182361; (f) Patil, V. D.;
Viswanathan, C. L. Indian Drugs 1998, 35, 686–692; (g)
Kreidl, J.; Czibula, L.; Deutschne´, J.; Werkne´ Papp, E.;
Nagyne´ Bagdy, J.; Dobay, L.; Hegedus, I.; Harsanyi, K.;
Borza, I. WO Patent 9801424, 1998; Chem. Abstr. 1998, 128,
1
12. Only one isomer could be detected by H and 13C NMR
studies. For a related reaction see: Hanessian, S.; Ratovelo-
manana, V. Synlett 1990, 501–503.
13. (−)-7: Rf=0.35 (petroleum ether/EtOAc, 95/5). [h]D=−5.2
(c 1.06/CHCl3). Mp 77°C. IR (KBr): 1728, 1513, 1229, 1186,
1150, 750 cm−1. 1H NMR l 7.44–7.28 (5H), 7.23 (m, 2H),
7.03 (m, 2H), 4.09 (ddd, 1H, J=10.7, 10.7 and 4.4 Hz), 3.67
(dd, 1H, J=10.7 and 6.6 Hz), 3.66 (s, 2H), 3.57 (dd, 1H,
J=10.7 and 6.6 Hz), 3.37 (ddd, 1H, J=11.4, 4.4 and 1.5
Hz), 3.15(ddd, 1H, J=11.0, 3.3and1.5Hz), 3.07–2.85(2H),
2.48–2.31 (2H), 1.64 (m, 1H), 0.71 (d, 3H, J=6.6 Hz), 0.70
(d, 3H, J=6.6 Hz). 13C NMR l 171.5 (s), 162.0 (d, J=245.4
Hz), 137.1 (s), 135.2 (d, J=3.0 Hz), 129.6 (dd, J=7.9 Hz),
128.9 (d), 128.4 (d), 127.4 (d), 115.2 (dd, J=31.4 Hz), 70.6
(t), 62.0 (t), 61.0 (t), 59.6 (d), 55.4 (t), 52.8 (d), 50.0 (d),
+
27.4 (d), 18.7 (q). EI MS m/z (relative intensity): 405 (M ,
+
1), 403 (M , 3), 369 (14), 368 (56), 354 (39), 314 (11), 312
(31), 276 (25), 91 (100). HRMS (CI+, CH4) calcd for
28
C23H ClFNO2 [(M+H)+]: 404.1793; found: 404.1788.
35
Calcd for C23H ClFNO2 [(M+H)+]: 406.1773; found:
37
28
406.1765.
14. The trans stereochemistry was assigned on the basis of
mechanistic considerations and spectroscopic data (H-5:
l=4.09 ppm, JH5ax-H6ax=10.7 Hz, JH5ax-H4ax=10.7 Hz,
J
H5ax-H6eq=4.4 Hz).
15. Kuehne, M. E.; Okuniewicz, F. J.; Kirkemo, C. L.; Bohnert,
J. C. J. Org. Chem. 1982, 47, 1335–1343.
16. (−)-9·HCl: [h]D=−10.6 (c 1, MeOH) [Ref. 6e: [h]D=−10.3
(c 1, MeOH)].