hindered site with respect to hexyl group.4b,5 For the
consecutive amination reactions, we considered the inter-
mediate 3 to be an ideal precursor in which N-Cbz, carbonyl,
and mesyl groups are arranged in proper position.
We thought the requisite intermediates for the route could
be prepared via B-alkyl Suzuki coupling of a homoallyl
amine moiety and the vinyl iodide compound containing a
mesyl leaving group. Recently, Suzuki-Miyamura coupling
has been applied appropriately for the synthesis of potent
natural molecules by taking advantage of its mild reaction
condition, substrate versatility, control of olefin geometry,
and even tolerance for water.6 We expected the mesyl group
would be compatible in the coupling and serve as a good
leaving group in the final step.
plex, and B(OMe)3 (50 mol %) to prepare 7, which was
synthesized in 70% yield.8 After treatment of the alcohol 7
with MsCl (90% yield), inversion of the chiral center was
carried out by reaction of the mesylate intermediate with
NaN3 in 97% yield. The azide 8 was reduced by LAH in
THF to an amine, which was readily protected by ClCO2Bn
in THF with K2CO3 to provide the desired compound 4 in
94% yield for two steps (Scheme 2).
Scheme 2a
Synthesis of intermediate 4 was initiated by preparing the
known chiral homoallylic alcohol 7 from heptanal. Among
many well developed methods of catalytic asymmetric
allylation of aldehydes,7 we chose a relatively practical route
using allyltributyltin, (R)-BINOL-Ti(IV) (10 mol %) com-
(2) Aronstam. R. S.; Daly, J. W.; Spande, T. F.; Narayanan, T. K.;
Albuquerque, E. X. Neurochem. Res. 1986, 11, 1227.
a (a) AllSnBu3, (R)-BINOL-Ti(IV), B(OMe)3, CH2CH2, 0 °C,
70%; (b) MsCl, Et3N, CH2Cl2, 0 °C, 90%; (c) NaN3, HMPA, 40
°C, 97%; (d) LAH, THF, rt; (e) ClCO2Bn, THF, K2CO3, 94% for
2 steps.
(3) Their structures have been tentatively assigned on the basis of the
mass spectrum [Daley, J. W. Fortschr. Chem. Org. Naturst. 1982, 41, 205].
(4) For asymmetric syntheses of indolizidine 167B, see: (a) Polniaszek,
R. P.; Belmont, S. E. J. Org. Chem. 1990, 55, 4688. (b) Jefford, C. W.;
Tang, Q.; Zaslona, A. J. Am. Chem. Soc. 1991, 113, 3513. (c) Jefford, C.
W.; Wang, J. B. Tetrahedron Lett. 1993, 34, 3119. (d) Takahata, H.; Bandoh,
H.; Momose, T. Heterocycles 1995, 41, 1797. (e) Lee, E.; Li, K. S.; Lim,
J. Tetrahedron Lett. 1996, 37, 1445. (f) Weymann, M.; Pfrengle, W.;
Schollmeyer, D.; Kunz, H. Synthesis 1997, 1151. (g) Angle, S. R.; Henry,
R. M. J. Org. Chem. 1997, 62, 8549. (h) Chalard, P.; Remuson, R.; Gelas-
Mialhe, Y.; Gramain, J.-C.; Canet, I. Tetrahedron Lett. 1999, 40, 1661. (i)
Cheˆnevert, R.; Ziarani, G. M.; Dasser, M. Heterocycles 1999, 51, 593. For
asymmetric syntheses of indolizidine 209D, see:. (j) Åhman, J.; Somfai, P.
Tetrahedron Lett. 1995, 36, 303. (k) Åhman, J.; Somfai, P. Tetrahedron
1995, 51, 9747. (l) Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J.
Org. Chem. 1995, 60, 398. (m) Jefford, C. W.; Sienkiewicz, K.; Thornton,
S. R. HelV. Chim. Acta 1995, 78, 1511. (n) Takahata, H.; Kubota, M.; Ihara,
K.; Okamoto, N.; Momose, T.; Azer, N.; Eldefrawi, A. T.; Eldefrawi, M.
E. Tetrahedron: Asymmetry 1998, 9, 3289. (o) Cheˆnevert, R.; Ziarani, G.
M.; Morin, M. P.; Dasser, M. Tetrahedron: Asymmetry 1999, 10, 3117.
(p) Yamazaki, N.; Ito, T.; Kibayashi, C. Org. Lett. 2000, 2, 465. (q) Back,
T. G.; Nakajima, K. J. Org. Chem. 2000, 65, 4543.
The coupling partner, internal alkenyl iodide 5, was made
selectively by treatment of 4-pentyne-1-ol with HI, generated
in situ,9 affording an internal iodoalkenyl alcohol as a major
compound in a 6:1 mixture of inseparable regioisomers, and
reaction of the resulting alcohol with MsCl in CH2Cl2 gave
the compound 5 in 36% yield for two steps (Scheme 3).
Scheme 3a
(5) Robins, D. J.; Sakdaret, S. J. Chem. Soc., Perkins Trans. 1 1981,
909.
a (a) TMSCl, NaI, CH3CN/H2O, rt; (b) MsCl, CH2Cl2, Et3N, 36%
for 2 steps.
(6) (a) Miyamura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (b) Suzuki,
A. J. Organomet. Chem. 1999, 576, 147. For recent application to natural
product syntheses, see: (c) Ohba, M.; Kawase, N.; Fujii, T. J. Am. Chem.
Soc. 1996, 118, 8250. (d) Su, D.-S.; Sorensen, E. J.; Danishefsky, S. J.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2801. (e) Takemoto, T.; Sodeoka,
M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1996, 61, 4876. (f) Meng, D.;
Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka, T.; Sorensen, E.; Dan-
ishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073. (g) Su, D.-S.; Balog,
A.; Meng, D.; Bertinato, P.; Danishefsky, S. J.; Zheng, Y.-H.; Chou, T.-
C.; He, L.; Horwitz, S. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2093.
(h) Fu¨rstner, A.; Seidel, G. J. Org. Chem. 1997, 62, 2332. (i) Trost, B. M.;
Lee, C. B. J. Am. Chem. Soc. 1998, 120, 6818. (j) Balog, A.; Harris, C.;
Savin, K.; Zhang, G.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int.
Ed. Engl. 1998, 37, 2675. (k) Fu¨rstner, A.; Konetzki, I. J. Org. Chem. 1998,
63, 3072. (l) Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. Tetrahedron
lett. 1998, 39, 9027. (m) Meng, D.; Danishefsky, S. J. Angew. Chem., Int.
Ed. 1999, 38, 1485. (n) Meng, D.; Tan, Q.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 1999, 38, 3197. (o) Trauner, D.; Schwartz, J. B.; Danishefsky, S.
J. Angew. Chem., Int. Ed. 1999, 38, 3542. (p) Trauner, D.; Danishefsky, S.
J. Tetrahedron lett. 1999, 40, 6511. (q) Harris, C. R.; Kuduk, S. D.; Balog,
A.; Savin, K.; Glunz, P. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1999,
121, 7050. (r) Zhu, B.; Panek, J. S. Org. Lett. 2000, 2, 2695. (s) Lee, C.
B.; Chou, T.-C.; Zhang, X.-G.; Wang, Z.-G.; Kuduk, S. K.; Chappell, M.;
Stachel, S. J.; Danishefsky, S. J. J. Org. Chem. 2000, 65, 6525. (t) Sasaki,
M.; Noguchi, K.; Fuwa, H.; Tachibana, K. Tetrahedron Lett. 2000, 41,
1425-1428. (u) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron Lett.
2000, 41, 8371-8375. (v) Nakamura, T.; Shiozaki, M. Tetrahedron Lett.
2001, 42, 2701-2704. (w) Takakura, H.; Noguchi, K.; Sasaki, M.;
Tachibana, K. Angew. Chem., Int. Ed. 2001, 40, 1090-1093.
The Suzuki coupling of 4 and 5 furnished the methylene
compound 10 in 64% yield, and conversion of 10 to the
carbonyl precursor 11 was performed by ozonolysis in CH2-
Cl2/MeOH in 80% yield. To obtain the optimal yield in the
ozonolysis process, immediate aqueous workup, after addi-
tion of DMS to the resulting peroxide intermediates at -78
°C, was necessary (Scheme 4).10
(7) (a) Yanagisawa, A. In ComprehensiVe Asymmetric Catalysis; Jacob-
sen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Chapter
27. (b) Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935 and references
therein.
(8) Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; Jung, W.-H. Synlett 1997, 889.
1
The enantiomeric purity was determined to be >92% via H NMR using
Eu(hfc)3 in CDCl3.
(9) Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett 1990, 675.
(10) Otherwise, an increasing amount of byproducts was formed,
presumably by reaction with MeOH under these conditions. However, after
separation, the product was relatively stable in MeOH solution even at room
temperature.
2986
Org. Lett., Vol. 3, No. 19, 2001