Conformational Dynamics of Charge-Transfer States in DonorϪBridgeϪAcceptor Systems
FULL PAPER
[2]
M. Polanyi, Atomic Reactions, Williams and Nordgate, Lon-
don, 1932.
(Merck, Ͼ 99%, washed three times with sulfuric acid). When the
purity of the solvent was found to be insufficient, the solvent was
purified by standard procedures. All alkyl ethers were distilled from
CaH2 or LiAlH4 prior to use. All acetates were washed with a sat-
urated sodium carbonate solution and distilled from CaH2. Ϫ
Fluorescence measurements at low temperature were performed us-
ing an Oxford Instruments liquid nitrogen cryostat DN 1704 with
an ITC4 control unit. The samples were degassed using at least four
freeze-pump-thaw cycles. Each sample was allowed to equilibrate
thermally for at least 20 min prior to data collection. Ϫ Fluores-
cence decay curves at single wavelengths were measured by picose-
cond time-correlated single-photon counting (SPC). The experi-
mental set-up has been fully described elsewhere.[47] A mode-locked
argon-ion laser (Coherent 486 AS Mode Locker and Coherent In-
nova 200 laser) was used to pump a DCM dye-laser (Coherent
model 700) synchronously. The output frequency was doubled with
a BBO crystal, resulting in 310Ϫ320-nm pulses. A Hamamatsu
microchannel plate photomultiplier (R3809) was used as detector.
The response function [full width at half maximum (fwhm) ഠ 18
ps] was obtained by monitoring the Raman band of a cell filled
with spectrograde water. The cells were painted black with camera
varnish on two adjacent sides to avoid reflection at the quartz/air
boundary. Ϫ The 2D time-resolved fluorescence measurements
were performed using a Hamamatsu streak camera system, con-
sisting of a Chromex IS250 spectrograph, an M5677 slow-speed
sweep unit, a C4792 trigger unit, a C5680 blanking unit, and a
C4742-95 digital CCD camera. For excitation, an LTB MSG400
nitrogen laser (337 nm, fwhm ഠ 0.5 ns) operating at 50 Hz was used
(fwhm ഠ 0.5 ns). The excitation and emission light were fiber-
coupled to the spectrograph. The images consist of 512 ϫ 512 pix-
els. In the time direction, the resolution is limited by the width of
the excitation pulse (fwhm ഠ 500 ps) and by the pointspread func-
tion of the imaging device. Thus, the Gaussian shaped fwhm of the
instrument response depends upon the time base used, which va-
ried from fwhm ϭ 0.5 to 5 ns. In the wavelength direction, the
resolution is limited by the slit and the grating used and was
fwhm ഠ 6 nm. We reduced the number of data points for the ana-
lysis by summing the response over 11Ϫ13 pixels (depending on
the spectral window used), which is effectively a smoothing over
circa 7Ϫ8 nm. Thus, a data set of 512 ϫ 33 points was routinely
used in the further analysis.
[3]
[4]
[5]
[6]
[7]
B. Wegewijs, R. M. Hermant, J. W. Verhoeven, A. G. M. Kunst,
R. P. H. Rettschnick, Chem. Phys. Lett. 1987, 140, 587.
B. Wegewijs, R. M. Hermant, J. W. Verhoeven, M. P. de Haas,
J. M. Warman, Chem. Phys. Lett. 1990, 168, 185.
I. H. M. Van Stokkum, T. Scherer, A. M. Brouwer, J. W. Verho-
even, J. Phys. Chem. 1994, 98, 852.
T. Scherer, I. H. M. van Stokkum, A. M. Brouwer, J. W. Verho-
even, J. Phys. Chem. 1994, 98, 10539.
B. Wegewijs, J. W. Verhoeven, in: Electron transfer Ϫ from isol-
ated molecules to biomolecules, part 1, vol. 106 (Eds.: J. Jortner,
M. Bixon), Wiley, New York, 1999, pp. 221.
X. Y. Lauteslager, B. Wegewijs, J. W. Verhoeven, A. M.
Brouwer, J. Photochem. Photobiol. A 1996, 98, 121.
G. F. Mes, H. J. van Ramesdonk, J. W. Verhoeven, J. Am.
Chem. Soc. 1984, 106, 1335.
X. Y. Lauteslager, M. J. Bartels, J. J. Piet, J. M. Warman, J. W.
Verhoeven, A. M. Brouwer, Eur. J. Org. Chem. 1998, 2467.
R. J. Willemse, J. J. Piet, J. M. Warman, F. Hartl, J. W. Verho-
even, A. M. Brouwer, J. Am. Chem. Soc. 2000, 122, 3721.
A. M. Brouwer, J. M. Zwier, C. Svendsen, O. S. Mortensen, F.
W. Langkilde, R. Wilbrandt, J. Am. Chem. Soc. 1998, 120,
3748.
A. M. Brouwer, P. G. Wiering, J. M. Zwier, F. W. Langkilde,
R. Wilbrandt, Acta Chem. Scand. 1997, 51, 217.
J. M. Zwier, Ph.D. thesis, University of Amsterdam, 2000.
J. M. Zwier, A. M. Brouwer, G. Balakrishnan, T. Keszthelyi, J.
F. Offersgaard, R. Wilbrandt, manuscript in preparation.
J. L. de Boer, A. Vos, Acta Crystallogr., Sect. B 1972, 28, 835.
J. L. de Boer, A. Vos, Acta Crystallogr., Sect. B 1972, 28, 839.
L. Meites, P. Zuman, CRC Handbook Series in Organic Electro-
chemistry, CRC Press, Cleveland OH, 1976.
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
E. C. Taylor, Synthesis 1981, 606.
A. Nose, T. Kudo, Chem. Pharm. Bull. 1981, 29, 1159.
A. G. Giumanini, G. Chiavara, M. M. Musiani, P. Rossi, Syn-
thesis 1980, 743.
T. Scherer, W. Hielkema, B. Krijnen, R. M. Hermant, C. Eijck-
elhoff, F. Kerkhof, A. K. F. Ng, R. Verleg, E. B. van der Tol,
A. M. Brouwer, J. W. Verhoeven, Recl. Trav. Chim. Pays-Bas
1993, 112, 535.
[22]
[23]
[24]
G. Gritzner, J. Kuta, Pure Appl. Chem. 1984, 56, 461.
´
R. R. Gagne, C. L. Koval, G. C. Lisensky, Inorg. Chem. 1980,
19, 2855.
[25]
W. C. Barette, Jr., H. W. Johnson, Jr., D. T. Sawyer, Anal.
Chem. 1984, 56, 1890.
A. M. Brouwer, J. Phys. Chem. A 1997, 101, 3626.
J. M. Zwier, J. Wichers Hoeth, A. M. Brouwer, J. Org. Chem.
2001, 66, 466.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A.
Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-La-
ham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslow-
ski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y.
Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S.
Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley,
D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C.
Gonzalez, J. A. Pople, Gaussian 94, Revision B.2, Pittsburgh
PA, 1995.
R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys.
1998, 109, 8218.
D. A. Forsyth, W. Zhang, J. A. Hanley, J. Org. Chem. 1996,
61, 1284.
I. Ikemoto, G. Katagiri, S. Nishimura, K. Yakushi, H. Kurado,
Acta Crystallogr., Sect. B 1979, 35, 2264.
F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp,
M. Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still,
J. Comput. Chem. 1990, 11, 440.
Syntheses: Details of the syntheses and characterizations of the
compounds studied are provided in the Supporting Information.
[26]
[27]
Supporting Information: Details of syntheses and characterization,
X-ray structural data of compound 7c, comparison of SPC and
streak-camera measurements of 5a in cyclohexane, estimated spec-
tral and kinetic parameters of 5a, 6a, and 7a in various solvents,
as derived from the streak-camera experiments (see also footnote
on the first page of this article).
[28]
[29]
Acknowledgments
We thank Bregje van den Berg and Dr. Jurriaan Zwier for the syn-
thesis of and measurements on compound 6d. Prof. Dr. L.W. Jenne-
skens (Utrecht University) is gratefully acknowledged for use of
his cyclic voltammetry apparatus. This work was supported by the
Netherlands Organization for Scientific Research (Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek, NWO).
[30]
[31]
[32]
[33]
[1]
J. W. Verhoeven, in: Electron transfer Ϫ from isolated molecules
to biomolecules, part 1, vol. 106 (Eds.: J. Jortner, M. Bixon),
Wiley, New York, 1999, pp. 603.
Eur. J. Org. Chem. 2001, 3105Ϫ3118
3117