1370
M. L. Curtin et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1367–1371
selectivity (ꢃ90-fold) with inhibitor 23 being the most
Acknowledgements
selective (1600-fold).
The authors wish to thank Weibo Wang, Stephen
Fakhoury and Gerry Sullivan for the preparation of
starting materials used in this work. Robert Warner,
Peter Kovar and Jang Lee are acknowledged for the
pharmacokinetic studies.
The cellular potency of selected compounds was eval-
uated in a RAS processing assay and a portion of that
data, including the reference inhibitors 1 and 2, is shown
in Table 3.21 While there was a general correlation
between FTase enzymatic activity and inhibition of
RAS processing (e.g., 12 vs 13), there were a number of
examples of equipotent FTase inhibitors with sig-
nificantly different cellular activity (e.g., 21 or 23 vs 22).
The most potent inhibitor in this assay (21) compared
favorably to clinical candidate 2 in both enzymatic and
cellular potency.
References and Notes
1. Barbacid, M. Annu. Rev. Biochem. 1987, 56, 779.
2. Bos, J. L. Cancer Res. 1990, 50, 1352.
3. Newman, C. M.; Magee, A. I. Biochim. Biophys. Acta 1993,
1155, 79.
4. Prendergast, G. C.; Rane, N. Expert Opin. Investig. Drugs
2001, 10, 2105.
5. Dinsmore, C. J. Curr. Opin. Oncol. Endoc. Metab. Invest.
Drugs 2000, 2, 26.
However, pharmacokinetic studies in rat of several of
these inhibitors, including compound 21, revealed
short half-lives (ꢀ1 h) and low oral bioavailability
(<10%).
6. The given IC50 was determined with bovine brain
FTase using the SPA assay, as in ref 10b. Crul, M.; de
Klerk, G. J.; Swart, M.; van’t Veer, L. J.; de Jong, D.; Boer-
rigter, L.; Palmer, P. A.; Bol, C. J.; Tan, H.; de Gast, G. C.;
Beijnen, J. H.; Schellens, J. H. M. J. Clin. Oncol. 2002, 20,
2726.
7. The given IC50 was determined with bovine brain FTase
using the SPA assay, as in ref 10b. Adjei, A. A.; Erlichman,
C.; Davis, J. N.; Cutler, D. L.; Sloan, J. A.; Marks, S.;
Hanson, L. J.; Svingen, P. A.; Atherton, P.; Bishop, W. R.;
Kirschmeier, P.; Kaufmann, S. H. Cancer Res. 2000, 60, 1871.
8. (a) Karp, J. E.; Kaufmann, S. H.; Adjei, A. A.; Lancet,
J. E.; Wright, J. J.; End, D. W. Curr. Opin. Oncol. 2001, 13,
470. (b) Hahn, S. M.; Bernhard, E.; McKenna, W. G. Semin.
Oncol. 2001, 28, 86.
An X-ray crystal structure was acquired for inhibitor
21 bound to rat farnesyltransferase along with
a-hydroxyfarnesylphosphonic acid (HFP), an FPP ana-
logue (Fig. 1).22,23 It was suspected that the imidazole-
containing biphenyl inhibitors (e.g., 4 and 9) maintain
binding affinity to the FTase active site by replacing the
important methionine-enzyme interaction of inhibitor 3
with an interaction between the imidazole and the
putative active site Zn2+ ion. The data from the X-ray
structure supported this hypothesis and also revealed
several other key inhibitor/enzyme interations which are
consistent with the SAR of this series. In possibly the
most important interaction, the distal imidazole nitro-
gen of 21 coordinates with the active site zinc (2.36 A)
through displacement of a water molecule, an interac-
tion not observed with the methionine-containing
biphenyl inhibitors such as 3 but similar to the zinc-
imidazole interaction of FTase-bound 1.22b The
naphthyl moiety sits in a hydrophobic pocket formed
by Trp102b and Trp106b, with a naphthyl/phenyl
dihedral angle of 60.1ꢁ. The tether N-benzyl ring fits
on a shelf created by Tyr361b with the m-cyano
substituent resting in a niche formed by the displace-
ment of a water molecule and making a hydrogen
bond with the enzyme backbone (3.22 A). The crystal
structure also revealed several interactions between 21
and the bound HFP as well as a hydrogen bond
between the biphenyl cyano group and the side-chain
of Tyr166b (3.47 A).
9. Qian, Y.; Vogt, A.; Sebti, S. M.; Hamilton, A. D. J. Med.
Chem. 1996, 39, 217.
10. (a) Augeri, D. J.; O’Connor, S. J.; Janowick, D.; Szcze-
pankiewicz, B.; Sullivan, Gerry; Larsen, J.; Kalvin, D.; Cohen,
J.; Devine, E.; Zhang, H.; Cherian, S.; Saeed, B.; Ng, S.;
Rosenberg, S. J. Med. Chem. 1998, 41, 4288. (b) O’Connor,
S. J.; Barr, K. J.; Wang, L.; Sorensen, B. K.; Tasker, A. S.;
Sham, H.; Ng, S.; Cohen, J.; Devine, E.; Cherian, S.; Saeed,
B.; Zhang, H.; Lee, J. Y.; Warner, R.; Tahir, S.; Kovar, P.;
Ewing, P.; Alder, J.; Mitten, M.; Leal, J.; Marsh, K.; Bauch,
J.; Hoffman, D. J.; Sebti, S. M.; Rosenberg, S. H. J. Med.
Chem. 1999, 42, 3701. (c) Henry, K. J., Jr.; Wasicak, J.; Tas-
ker, A. S.; Cohen, J.; Ewing, P.; Mitten, M.; Larsen, J. J.;
Kalvin, D. M.; Swenson, R.; Ng, S.; Saeed, B.; Cherian, S.;
Sham, H.; Rosenberg, S. H. J. Med. Chem. 1999, 42, 4844. (d)
Shen, W.; Fakhoury, S.; Donner, G.; Henry, K.; Lee, J.;
Zhang, H.; Cohen, J.; Warner, R.; Saeed, B.; Cherian, S.;
Tahir, S.; Kovar, P.; Bauch, J.; Ng, S.; Marsh, K.; Sham, H.;
Rosenberg, S. Bioorg. Med. Chem. Lett. 1999, 9, 703. (e)
Augeri, D. J.; Janowick, D.; Kalvin, D.; Sullivan, G.; Larsen,
J.; Dickman, D.; Ding, H.; Cohen, J.; Lee, J.; Warner, R.;
Kovar, P.; Cherian, S.; Saeed, B.; Zhang, H.; Tahir, S.; Ng, S.;
Sham, H.; Rosenberg, S. H. Bioorg. Med. Chem. Lett. 1998, 9,
1069.
In summary, a series of potent and novel imidazole-
containing biphenyl inhibitors of FTase has been dis-
covered which has significant FTase/GGTase selectivity
and cellular Ras processing inhibitory activity. An
X-ray crystal structure of the most potent member of
the series with rat farnesyltransferase revealed several
key inhibitor/enzyme interactions including an imida-
zole/zinc coordination and two cyano/enzyme hydrogen
bonds. Analysis of several of these compounds in rat
indicated an unacceptable pharmacokinetic profile.
Further modification of the imidazole-containing
biphenyl FTase inhibitors will be reported in due
course.
11. Wang, W. Unpublished data.
12. Vasudevan, A.; Qian, Y.; Vogt, A.; Blaskovich, M. A.;
Ohkanda, J.; Sebti, S. M.; Hamilton, A. D. J. Med. Chem.
1999, 42, 1333.
13. For a similar conversion, aniline to methyl benzoate via
diazotization/iodination followed by palladium catalyzed carbo-
methoxylation, see: Diaz, P.; Michel, S.; Stella, L.; Charpen-
tier, B. Bioorg. Med. Chem. Lett. 1997, 7, 2289.
14. Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L.
J. Am. Chem. Soc. 1999, 121, 9550.