J. Am. Chem. Soc. 2001, 123, 9681-9682
9681
Scheme 1
Design of a Hole-Trapping Nucleobase: Termination
of DNA-Mediated Hole Transport at
N2-Cyclopropyldeoxyguanosine
Kazuhiko Nakatani,* Chikara Dohno, and Isao Saito*
Department of Synthetic Chemistry and
Biological Chemistry, Faculty of Engineering
Kyoto UniVersity, CREST, Japan Science and
Technology Corporation (JST), Kyoto 606-8501, Japan
ReceiVed February 22, 2001
photoexcited riboflavin induces homolytic cyclopropane ring
opening as evidenced by the formation of N2-(3-hydroxypro-
panoyl)dG, 2. With the use of a dCPG-containing duplex, we have
demonstrated that dCPG efficiently terminates DNA-mediated hole
transport at its own site.
While the mechanism of DNA-mediated hole transport is a
subject of controversy,1-6 it is now evident from remote guanine
(G) oxidation of duplex DNAs containing a tethered oxidant that
G radical cation (hole) migrates a distance through the DNA
π-stack.5-9 Due to ionization potentials of GG and GGG lower
than that of single G,2d,10,11 these stacked G sites function as a
thermodynamic sink of holes eventually producing piperidine
labile sites. In principle, hole migration from hole donor to
acceptor competes with hole trapping by water and/or oxygen.
Therefore, overall efficiency of hole transfer is primarily deter-
mined by the rates of hole migration and hole trapping. When
the rate of hole trapping is much slower than that of hole
migration, equilibration of hole between donor and acceptor can
be achieved.8d While the rate of hole migration can be attenuated
by changing the potential energy gap between hole donor and
acceptor,7c the modulation of hole-transport efficiency by changing
the rate of hole trapping has never been demonstrated. We report
a novel hole-trapping nucleoside N2-cyclopropyl-2′-deoxy-
guanosine, 1 (dCPG), which possesses a cyclopropyl group on N2
as a radical-trapping device. One-electron oxidation of dCPG by
It is known that radical cations of cyclopropylamine12 and
N-alkyl- and N-arylcycloprpylamines13 rapidly undergo homolytic
cyclopropane ring opening to produce â-iminium carbon radicals.
The rate of homolytic ring opening of the cyclopropylamine
radical cation is believed to be larger than that of the correspond-
ing ring opening of the neutral N-alkylcycloprpylaminyl radical
(7.2 × 1011 s-1).14 While the magnitude of the rate is unknown,
the cyclopropane ring opening of dCPG radical cation is expected
to be rapid. We first examined one-electron oxidation of dCPG
with photoexcited riboflavin in aqueous solution.15 dCPG was
rapidly consumed by photoirradiation at 366 nm in the presence
of riboflavin, producing two major products after subsequent
incubation of the photoirradiated mixture (Figure S1). These
products were identified as dG and N2-(3-hydroxypropanoyl)dG
(1) (a) Priyadarshy, S.; Risser, S. M.; Beratan, D. N. J. Phys. Chem. 1996,
100, 17678-17682. (b) Beratan, D. N.; Priyadarshy, S.; Risser, S. M. Chem.
Biol. 1997, 4, 3-8.
(2) (a) Bixon, M.; Jortner, J. J. Chem. Phys. 1997, 107, 5154-5170. (b)
Jortner, J.; Bixon, M.; Langenbacher, T.; Michel-Beyerle, M. E. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 12759-12765. (c) Bixon, M.; Giese, B.; Wessely,
S.; Langenbacher, T.; Michel-Beyerle, M. E.; Jortner, J. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 11713-11716. (d) Voityuk, A. A.; Jortner, J.; Bixon,
M.; Ro¨sch, N. Chem. Phys. Lett. 2000, 324, 430-434.
(3) Berlin, Y. A.; Burin, A. L.; Ratner, M. A. J. Am. Chem. Soc. 2001,
123, 260-268. (b) Berlin, Y. A.; Burin, A. L.; Ratner, M. J. Phys. Chem.
2000, 104, 443-445.
(4) Grozema, F. C.; Berlin, Y. A.; Siebbeles, L. D. A. J. Am. Chem. Soc.
2000, 122, 10903-10909.
(5) (a) Nu´n˜ez, M. E.; Hall, D. B.; Barton, J. K. Chem. Biol. 1999, 6, 85-
97. (b) Kelley, S. O.; Barton, J. K. Science 1999, 283, 375-381. (c) Williams,
T. T.; Odom, D. T.; Barton J. K. J. Am. Chem. Soc. 2000, 122, 9048-9049.
(6) (a) Henderson, P. T.; Jones, D.; Hampikian, G.; Kan, Y.; Schuster, G.
B. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353-8358. (b) Ly, D.; Sanii, L.;
Schuster, G. B. J. Am. Chem. Soc. 1999, 121, 9400-9410. (c) Conwell, E.
M.; Rakhmanova, S. V. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4556-4560.
(7) (a) Lewis F. D.; Wu, T.; Letsinger, R. L.; Wasielewski, M. R. Acc.
Chem. Res. 2001, 34, 159-170. (b) Lewis, F. D.; Liu, X.; Liu, J.; Hayes, R.
T.; Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 12037-12038. (c) Lewis,
F. D.; Kalgutkar, R. S.; Wu, Y.; Liu, X.; Liu, J.; Hayes, R. T.; Miller, S. E.;
Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 12346-12351.
(8) (a) Meggers, E.; Michel-Beyerle, M. E.; Giese, B. J. Am. Chem. Soc.
1998, 120, 12950-12955. (b) Giese, B.; Wessely, S.; Spormann, M.;
Lindemann, U.; Meggers, E.; Michel-Beyerle, M. E. Angew. Chem., Int. Ed.
1999, 38, 996-998. (c) Giese, B. Acc. Chem. Res. 2000, 33, 631-636. (d)
Giese, B.; Spichty, M. Chem. Phys. Chem. 2000, 1, 195-198.
(9) (a) Nakatani, K.; Dohno, C.; Saito, I. J. Am. Chem. Soc. 1999, 121,
10854-10855. (b) Nakatani, K.; Dohno, C.; Saito, I. J. Am. Chem. Soc. 2000,
122, 5893-5894. (c) Nakatani, K.; Dohno, C.; Saito, I. Tetrahedron Lett.
2000, 41, 10041-10045.
1
1
2 by H NMR and high-resolution FABMS. Comparison of H
NMR spectra of 2 with those of the authentic sample unambigu-
ously confirmed the structure.16 Formation of dG by incubating
the photoirradiated mixture suggested that one-electron oxidation
of 1 activated transformation of the cyclopropyl group at N2 to a
group being highly susceptible to hydrolysis (Scheme 1).17
Having established that 1 radical cation undergoes a very rapid
cyclopropane ring opening, we examined the hole trapping by 1
(12) (a) Qin, X.-Z.; Williams, F. J. Am. Chem. Soc. 1987, 109, 595-597.
(b) Kim, J.-M.; Bogdan, M. A.; Mariano, P. S. J. Am. Chem. Soc. 1991, 113,
9251-9257. (c) Bouchoux, G.; Alcaraz, C.; Dutuit, O.; Nguyen, M. T. J.
Am. Chem. Soc. 1998, 120, 152-160.
(13) (a) Zhong, B.; Silverman, R. B. J. Am. Chem. Soc. 1997, 119, 6690-
6691. (b) Lee, J.; U, J. S.; Blackstock, S. C.; Cha, J. K. J. Am. Chem. Soc.
1997, 119, 10241-10242. (c) Shaffer, C. L.; Morton, M. D.; Hanzlik, R. P.
J. Am. Chem. Soc. 2001, 123, 349-350.
(10) (a) Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118, 7063-7068.
(b) Saito, I. Nakamura, T.; Nakatani, K. J. Am. Chem. Soc. 2000, 122, 3001-
3006. (c) Saito, I.; Nakamura, T.; Nakatani, K.; Yoshioka, Y.; Yamaguchi,
K.; Sugiyama, H. J. Am. Chem. Soc. 1998, 120, 12686-12687. (d) Saito, I.;
Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida, A.; Yamamoto, M. J.
Am. Chem. Soc. 1995, 117, 6406-6407.
(14) Musa, O. M.; Horner, J. H.; Shahin, H.; Newcomb, M. J. Am. Chem.
Soc. 1996, 118, 3862-3868.
(15) dCPG was synthesized from 2-fluorodeoxyinosine by substitution of
fluorine with cyclopropylamine. (a) Acedo, M.; Fa`brega, C.; Avin˜o, A.;
Goodman, M.; Fagan, P.; Wemmer, D.; Eritja, R. Nucleic Acids Res. 1994,
22, 2982-2989. (b) Adib, A.; Potier, P. F.; Doronina, S.; Huc, I.; Behr, J.-P.
Tetrahedron Lett. 1997, 38, 2989-2992.
(11) Prat, F.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998, 120,
845-846.
10.1021/ja010479a CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/07/2001