S. K. Mandal, S. C. Roy / Tetrahedron Letters 48 (2007) 4131–4134
4133
Procter, G. Tetrahedron 1995, 51, 12301; (f) McNicholas,
C.; Simpson, T. J.; Willett, N. J. Tetrahedron Lett. 1996,
37, 8053; (g) Salvadori, P.; Superchi, S.; Minutolo, F. J.
Org. Chem. 1996, 61, 4190, and references cited therein;
(h) Uchida, K.; Watanabe, H.; Kitahara, T. Tetrahedron
1998, 54, 8975; (i) Tahara, N.; Fukuda, T.; Iwao, M.
Tetrahedron Lett. 2004, 45, 5117; (j) Clayden, J.; Stimson,
C. C.; Helliwell, M.; Keenan, M. Synlett 2006, 873.
OMe
OMe
NBS / AIBN
CCl4, 92%
CO2Me
CO2Me
CH2Br
(i) Cp2TiCl / THF
(ii)
Me
MeO
CHO
4
5
53%
OH O
OMeO
BBr3 / CH2Cl2
O
O
-78 ºC, 3 h
88%
4. (a) Napolitano, E.; Spinelli, G.; Fiaschi, R.; Marsili, A. J.
Chem. Soc., Perkin Trans. 1 1987, 2565; (b) Hamada, Y.;
Hara, O.; Kawai, A.; Kohno, Y.; Shioiri, T. Tetrahedron
1991, 47, 8635; (c) Fitzgerald, J. J.; Pagano, A. R.;
Sakoda, V. M.; Olofson, R. A. J. Org. Chem. 1994, 59,
4117; (d) Yu, N.; Poulain, R.; Tartar, A.; Gesquiere, J.-C.
OH
OMe
6
7
Scheme 2.
Tetrahedron 1999, 55, 13735; (e) Gunes, M.; Speicher, A.
¨
Tetrahedron 2003, 59, 8799.
mp 152–154 ꢁC (Scheme 2). Demethylation of 6 with
boron tribromide in CH2Cl2 afforded ( )-hydrangenol
(7)11 in 88% yield12 as colorless crystals, mp 179–
181 ꢁC (lit.10 mp 181 ꢁC).
5. (a) Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem.
1998, 63, 2829; (b) Roy, S. C.; Rana, K. K.; Guin, C. J.
Org. Chem. 2002, 67, 3242; (c) Jana, S.; Guin, C.; Roy, S.
C. Tetrahedron Lett. 2004, 45, 6575; (d) Jana, S.; Guin, C.;
Roy, S. C. J. Org. Chem. 2005, 70, 8252; (e) Jana, S.; Guin,
C.; Roy, S. C. Tetrahedron Lett. 2005, 46, 1155; (f)
Mandal, S. K.; Jana, S.; Roy, S. C. Tetrahedron Lett.
2005, 46, 6115; (g) Banerjee, B.; Roy, S. C. Eur. J. Org.
Chem. 2006, 489; (h) Mandal, S. K.; Roy, S. C. Tetrahe-
dron Lett. 2006, 47, 1599; (i) Jana, S.; Roy, S. C.
Tetrahedron Lett. 2006, 47, 5949.
In conclusion, we have developed a mild radical-induced
method for the synthesis of C-3 substituted 3,4-
dihydroisocoumarins using titanium(III) chloride as
the radical initiator. This methodology has also been
applied successfully to the total synthesis of ( )-
hydrangenol.
6. RajanBabu, T. V.; Nugent, W. A. J. Am. Chem Soc. 1994,
116, 986, and references cited therein.
7. Typical procedure: A red solution of Cp2TiCl2 (747 mg,
3.0 mmol) in deoxygenated THF (40 mL) was stirred with
activated zinc dust (130 mg, 2 mmol) (activated zinc dust
was prepared by washing 20 g of commercially available
zinc dust with 60 mL of 4 N HCl followed by thorough
washing with water until the washings became neutral and
finally washing with dry acetone and then drying in vacuo)
under argon until it turned green. This green solution was
transferred to a dropping funnel via cannula and was
added dropwise over 9 h to a solution of bromide 1
(364 mg, 1.5 mmol) and aldehyde 2b (225 mg, 1.5 mmol)
in THF (20 mL). The reaction mixture was then stirred for
an additional 4 h. After completion of the reaction
(monitored by TLC), it was quenched slowly with 25%
aqueous H2SO4. Most of THF was removed under
reduced pressure and resulting residue was extracted with
diethyl ether (3 · 25 mL). The organic layer was washed
successively with water (2 · 10 mL), brine (2 · 10 mL),
and finally dried (Na2SO4). The solvent was removed
under reduced pressure and the crude material obtained
was purified by column chromatography over silica gel
(ethyl acetate in light petroleum) to furnish 3b (237 mg,
59%) as a crystalline solid, mp 138–140 ꢁC; IR (KBr):
Acknowledgments
We thank the DST, New Delhi for financial support.
S.K.M. thanks the CSIR, New Delhi for awarding a
research fellowship.
References and notes
1. (a) Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K.;
Nakajima, S. Chem. Pharm. Bull. 1981, 29, 2689; (b)
Shimojima, Y.; Shirai, T.; Baba, T.; Hayashi, H. J. Med.
Chem. 1885, 28, 3; (c) Fusetani, N.; Sugawar, T.; Matsu-
naga, S.; Hirota, H. J. Org. Chem. 1991, 56, 4971; (d)
Yoshikawa, M.; Uchida, E.; Chatani, N.; Kobayashi, H.;
Naitoh, Y.; Okuno, Y.; Matsuda, H.; Yamahara, J.;
Murakami, N. Chem. Pharm. Bull. 1992, 40, 3352; (e)
Yoshikawa, M.; Ueda, T.; Shimoda, H.; Murakami, T.;
Yamahara, J.; Matsuda, H. Chem. Pharm. Bull. 1999, 47,
383; (f) Umehara, K.; Matsumoto, M.; Nakamura, M.;
Miyase, T.; Kuroyanagi, M.; Noguchi, H. Chem. Pharm.
Bull. 2000, 48, 566; (g) Kongsaeree, P.; Prabpai, S.;
Sriubolmas, N.; Vongvein, C.; Wiyakrutta, S. J. Nat.
Prod. 2003, 66, 709; (h) Kokubun, T.; Veitch, N. C.;
Bridge, P. D.; Simmonds, M. S. J. Phytochemistry 2003,
62, 779; (i) Zidorn, C.; Lohwasser, U.; Pschorr, S.;
Salvenmoser, D.; Ongania, K.-H.; Ellmerer, E. P.; Bo¨rner,
A.; Stuppner, H. Phytochemistry 2005, 66, 1691; (j) Jiao,
P.; Gloer, J. B.; Campbell, J.; Shearer, C. A. J. Nat. Prod.
2006, 69, 612.
1705, 1448, 1255 cmÀ1 1H NMR (300 MHz, CDCl3): d
;
3.05 (dd, J = 3.0, 16.4 Hz, 1H), 3.28 (dd, J = 12.0,
16.4 Hz, 1H), 5.42 (dd, J = 3.0, 12.0 Hz, 1H), 5.95 (s,
2H), 6.79 (d, J = 8.0 Hz, 1H), 6.89 (dd, J = 1.0, 8.0 Hz,
1H), 6.95 (d, J = 1.0 Hz, 1H), 7.25 (d, J = 7.3 Hz, 1H),
7.39 (dd, J = 7.5 Hz, 1H), 7.54 (dd, J = 7.5 Hz, 1H), 8.10
(d, J = 7.5 Hz, 1H); 13C NMR (75 MHz, CDCl3): d 34.5,
78.8, 100.2, 105.7, 107.2, 118.9, 124.0, 126.3, 126.8, 129.3,
131.3, 132.8, 137.8, 146.8, 146.9, 164.2; HRMS Calcd for
C16H13O4 [M++H] 269.0808. Found: 269.0849.
8. Rosales, A.; Oller-Lopez, J. L.; Justicia, J.; Gansa¨uer, A.;
Oltra, J. E.; Cuerva, J. M. Chem. Commun. 2004, 2628.
9. (a) Asahina, Y.; Asano, J. Chem. Ber. 1929, 62B, 171; (b)
Asahina, Y.; Asano, J. Chem. Ber. 1930, 63B,
429.
2. Jeong, J. H.; Weinreb, S. M. Org. Lett. 2006, 8, 2309.
3. (a) Watanabe, M.; Sahara, M.; Kubo, M.; Furukawa, S.;
Billedeau, R. J.; Snieckus, V. J. Org. Chem. 1984, 49, 742;
(b) Fu, P. P.; Unruh, L. E.; Miller, D. W.; Huang, L. W.;
Yang, D. T. C. J. Org. Chem. 1985, 50, 1259; (c) Regan, A.
C.; Staunton, J. J. Chem. Soc., Chem.Commun. 1987, 520;
(d) Broady, S. D.; Rexhausen, J. E.; Thomas, E. J. J.
Chem. Soc., Chem.Commun. 1991, 708; (e) Ward, R. A.;
10. Tyman, J. H. P.; Visani, N. Chem. Phys. Lipids 1997, 85,
157.