K.-S. Huang, E.-C. Wang / Tetrahedron Letters 42 (2001) 6155–6157
6157
tuted naphthalenes and naphthols via RCM reaction
References
are currently in progress in our laboratory. Further-
more the investigation of the effect of various allyloxy
groups on isovanillin to undergo Claisen rearrangement
is also currently in progress.
1. Boyd, M. R.; Hallock, Y. F.; Cardellina, II, J. H.;
Manfredi, K. P.; Blunt, J. W.; McMahon, J. B.; Buckheit,
Jr., R. W.; Bringmann, G.; Schaffer, M.; Cragg, G. M.;
Thomas, D. W.; Jato, J. G. J. Med.Chem. 1994, 37,
1740–1745.
General procedure for the preparation of naphthalenes
2. Hallock, Y. F.; Manfredi, K. P.; Blunt, J. W.; Cardellina,
II, J. H.; Schaffer, M.; Gluden, K. P.; Bringmann, G.;
Lee, A. Y.; Clardy, J.; Francois, G.; Boyd, M. R. J. Org.
Chem. 1994, 59, 6349–6355.
3. (a) Hoye, T. R.; Mi, L. Tetrahedron Lett. 1996, 37,
3097–3098; (b) Hoye, T. R.; Mi, L. J. Org. Chem. 1997,
62, 8586–8588.
4. (a) Kunz, W.; Jacobi, H.; Koch, K. Patent Sanol
Arzneim. DE 1236523, 1967; Chem. Abstr. 1967, 67,
64046k; (b) Crowther, A. F.; Smith, L. H. Patent Impe-
rial Chem. Ind. BE 640312. 1964; Chem. Abstr. 1965, 63,
6933.
5. de Koning, C. B.; Michael, J. P.; Rousseau, A. L. J.
Chem. Soc., Perkin Trans. 1 2000, 787–797 and references
cited therein.
6. Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041.
7. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413–4450; (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem.
Res. 2001, 34, 18–29; (c) Wang, E. C.; Huang, K. S.; Lin,
G. W.; Lin, J. R.; Hsu, M. K. J. Chin. Chem. Soc. 2001,
48, 83–90.
8. Evans, P.; Grigg, R.; Ramzan, M. I.; Sridharan, V.;
York, M. Tetrahedron Lett. 1999, 40, 3021–3024.
9. Data for 6b: colorless liquid, 1H NMR (CDCl3, 600
(8a–f) and (9g–i)
Compound 6a–f or 7d–f (1 mmol) dissolved in anhy-
drous CH2Cl2 (15 mL), was added with Grubbs catalyst
(0.05 mmol). The mixture was stirred for 2 h at ambient
temperature under dry argon. And then the solution
was added with silica gel (0.25 g) and continually
stirred for overnight at room temperature. Finally the
solvent was removed under reduced pressure, and the
residue was subjected to a silica gel column (1:1 hexane/
MTBE) or to distill under vacuum to give 8a–f and
9g–i, respectively. The selected spectral data was given
as follows: Compound 8f was obtained as colorless
crystals, mp 67–68°C; bp 120–121°C (3 mmHg); 1H
NMR (CDCl3, 600 MHz) l: 2.89 (s, 3H, CH3
6 ), 3.99 (s,
3H, OCH3), 5.07 (2H, OCH2C6H5), 7.20 (d, J=7.2 Hz,
6
6
1H), 7.21 (t, J=7.2 Hz, 1H), 7.31 (d, J=8.4 Hz, 1H),
7.35 (t, J=7.2 Hz, 1H), 7.42 (t, J=7.2 Hz, 1H), 7.57 (d,
J=7.2 Hz, 2H), 7.61 (d, J=7.2 Hz, 1H), 7.62 (d, J=8.4
Hz, 1H); 13C NMR (CDCl3, 100 MHz) l: 24.05 (C
56.85 (OC6 H3), 75.56 (OC6 H2C6H5), 114.61, 123.64,
6
H3),
125.26, 126.49, 127.71, 127.93, 128.36, 128.65, 129.10,
130.92, 133.35, 137.92, 144.12, 149.81. EI–MS (70 eV)
m/z 278 (M+, 100), 263 (23.67), 245 (21.23), 235 (12.02),
202 (28.02), 145 (25.08), 129 (14.52), 115 (22.90), 91
(20.30); HRMS: calcd. for C19H18O2: 278.1307. Found:
278.1307. Compound 9h was obtained as colorless crys-
MHz) l: 1.36 (t, J=7.2 Hz, 3H, OCH2CH3
1H, OH, D2O exchangeable), 3.50 (ddt, J=15.6 Hz,
J=5.4 Hz, J=1.8 Hz, 1H, CH2=CH CH2), 3.60 (ddt,
J=15.6 Hz, J=5.4 Hz, J=1.8 Hz, 1H, CH2=CH CH2),
3.82 (s, 3H, OCH3), 3.98 (q, J=7.2 Hz, 2H, OCH2CH3),
6 ), 2.11 (br s.
1
6
tals, mp 77–78°C; H NMR (CDCl3, 600 MHz) l: 1.54
6
(t, J=6.8 Hz, 3H, OCH2CH3
6 ), 3.98 (s, 3H, OCH6 3), 4.21
6
(q, J=6.8 Hz, 2H, OCH2CH3), 7.11 (s, 2H, H-1 and
6
4.91 (dd, J=16.8 Hz, 1.8 Hz, 1H), 5.01 (dd, J=9.9 Hz,
1.8 Hz, 1H), 5.17 (dt, J=10.2 Hz, 1.2 Hz, 1H), 5.31 (dt,
J=16.8 Hz, 1.2 Hz, 1H), 5.35 (br. s, 1H), 6.02 (m, 2H),
6.80, 7.13 (each d, J=8.4 Hz, 2H, H-5 and H-6); 13C
H-4), 7.33 (dt, J=9.6 Hz, J=3.6 Hz, 2H, H-6, H-7),
7.68 (ddd, J=9.6 Hz, J=5.7 Hz, J=3.6 Hz, 2H, H-5,
H-8); 13C NMR (CDCl3, 100 MHz) l: 14.61 (C
6
H3),
55.80 (OC6 H3), 64.09 (OC6 H2CH3), 106.36, 107.27,
NMR (CDCl3, 100 MHz) l: 15.43 (OCH2C
(CH2=CHCH2), 55.35 (OCH3), 68.58 (OCH2CH3), 70.58
(CHOH), 110.23, 114.07, 122.17, 131.23, 137.43, 139.95,
6 H3), 29.69
124.04, 126.20, 129.07, 129.19, 148.72, 149.65; EI-MS
(70 eV) m/z 202 (M+, 79.17), 174 (100), 159 (58.71), 131
(91.91), 115 (31.07), 102 (33.21), 77 (13.06); HRMS:
calcd for C13H14O2: 202.0994. Found: 202.0992.
6
6
6
6
146.05, 151.97; HRMS, calcd for C15H20O3: 248.1412.
Found: 248.1414.
10. Bisanz, T. Rocz. Chem. 1956, 30, 111–118; Chem. Abstr.
1957, 51, 323i.
11. (a) Carvalho, C. F.; Russo, A. V.; Sargent, M. V. Aust. J.
Chem. 1985, 38, 777–792; (b) Loozen, H. J. J. J. Org.
Chem. 1975, 40, 520–521.
Acknowledgements
We wish to thank Professor Takahada Hiroki, Hokaido
Pharmaceutical University for valuable discussion, and
to thank NSC, Taiwan for financial support.
12. Narasimhan, N. S.; Mukhopadhyay, T.; Kusurkar, S. S.
Indian J. Chem. Sect. B. 1981, 20, 546–548.
.