3350 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 21
Letters
(11) (a) Fields, G. B.; Van Wart, H. E.; Birkedal-Hansen, H. Sequence
specificity of human skin fibroblast collagenase. Evidence for the
role of collagen structure in determining the collagenase cleavage
site. J . Biol. Chem. 1987, 262, 6221-6226, (b) Netzel-Arnett,
S.; Fields, G. B.; Birkedal-Hansen, H.; Van Wart, H. E. Sequence
specificities of human fibroblast and neutrophil collagenases. J .
Biol. Chem. 1991, 266, 6747-6755.
(12) Tortorella, M.; Pratta, M.; Liu, R-Q.; Abbaszade, I.; Ross, H.;
Burn, T.; Arner, E. The Thrombospondin Motif of Aggrecanase-1
(ADAMTS-4) is Critical for Aggrecan Substrate Recognition and
Cleavage. J . Biol. Chem 2000, 275, 25791-25797.
(13) Gowravaram, M. R.; Tomczuk, B. E.; J ohnson, J . S.; Delecki,
D.; Cook, E. R.; Ghose, A. K.; Mathiowetz, A. M.; Spurlino, J .
C.; Rubin, B.; Smith, D. L.; Pulvino, T. A.; Wahl, R. C. Inhibition
of matrix metalloproteinases by hydroxamates containing het-
eroatom-based modifications of the P1′ group. J . Med. Chem.
1995, 38, 2570-2581.
(14) Dorsey, B. D.; Levin, R. B.; McDaniel, S. L.; Vacca, J . P.; Guare,
J . P.; Darke, P. L.; Zugay, J . A.; Emini, E. A.; Schleif, W. A.; et
al. L-735,524: The Design of a Potent and Orally Bioavailable
HIV Protease Inhibitor. J . Med. Chem. 1994, 37, 3443-51.
(15) Zhang, D.; Botos, I.; Gomis-Ruth, F. X.; Doll, R.; Blood, C.;
Njoroge, F. G.; Fox, J . W.; Bode, W.; Meyer, E. F. Structural
interaction of natural and synthetic inhibitors with the venom
metalloproteinase atrolysin C. Proc. Natl. Acad. Sci. U.S.A. 1994,
91, 8447-8451.
(16) Gomis-Ruth, F. X.; Kress, L. F.; Kellermann, J .; Mayr, I.; Huber,
R.; Bode, W. Refined 2.0A X-ray crystal structure of the snake
venom zinc endopeptidase adamalysin II. Primary and tertiary
structure determination, refinement, molecular structure and
comparison with astacin, collagenase and thermolysin. J . Mol.
Biol. 1994, 239, 513-544.
(17) Luty, B. A.; Wasserman, Z. R.; Stouten, P. F. W.; Hodge, C. N.;
Zacharias, M.; McCammon, J . A. A molecular mechanics/grid
method for evaluation of ligand-receptor interactions. J . Com-
put. Chem. 1995, 16, 454-464.
(18) (a) Tortorella, M.; Pratta, M.; Liu, R-Q.; Abbaszade I.; Ross H.;
Burn T.; Arner E. The Thrombosponding Motif of Aggrecanase-1
(ADAMTS-4) is Critical for Aggrecan Substrate Recognition and
Cleavage. J . Biol. Chem 2000, 275, 25791-25797. (b) Xue, C.-B.;
He, X.; Roderick, J .; DeGrado, W. F.; Cherney, R. J .; Hardman,
K. D.; Nelson, D. J .; Copeland, R. A.; J affee, B. D.; Decicco, C.
P. Design and synthesis of cyclic inhibitors of matrix metallo-
proteinases and TNF-alpha production. J . Med. Chem. 1998, 41,
1745-1748. (c) Miller, J . A.; Arner, E. C.; Copeland, R. A.; Davis,
G. L.; Pratta, M., Tortorella, M. D. Assays and peptide substrate
for determining aggrecan-degrading metalloprotease activity.
WO 0005256, 1998.
(19) (a) Dunten, P.; Kammlott, U.; Crowther, R.; Levin, W.; Foley,
L. H.; Wang, P.; Palermo, R. X-ray structure of a novel matrix
metalloproteinase inhibitor complexed to stromelysin. Protein
Sci. 2001, 10, 923-926. (b) Pikul, S.; Dunham, K.; M, Almstead,
N. G.; De B. Natchus, M. G.; Taiwo, Y. O.; Williams, L. E.; Hynd,
B. A.; Hsieh, L. C.; J anusz, M. J .; Gu, F.; Mieling, G. E.
Heterocycle-based MMP inhibitors with P2′ substituents. Bioorg.
Med. Chem. Lett. 2001, 11, 1009-13. (c) Moy, F. J .; Chanda, P.
K.; Chen, J . M.; Cosmi, S.; Edris, W.; Levin, J . I.; Powers, R.
High-resolution solution structure of the catalytic fragment of
human collagenase-3 (MMP-13) complexed with a hydroxamic
acid inhibitor. J . Mol. Biol. 2000, 302, 671-89.
pounds 2-3, 6-11. This material is available free of charge
Refer en ces
(1) Mankin, H. J .; Lippiello, L. J . Biochemical and metabolic
abnormalities in-articular cartilage from osteo-arthritic human
hips. J . Bone J oint Surg 1970, 52A, 424-434.
(2) (a) Fosang, A. J .; Neame, P. J .; Last, K.; Hardhingham, T. E.;
Murphy, G.; Hamilton, J . A. The interglobular domain of
cartilage aggrecan is cleaved by PUMP, gelatinases, and cathe-
psin B. J . Biol. Chem. 1992, 267, 19470-19474. (b) Flannery,
C. R.; Lark, M. W.; Sandy, J . D. Identification of a stromelysin
cleavage site within the interglobular domain of human aggre-
can. Evidence for proteolysis at this site in vivo in human
articular cartilage. J . Biol. Chem. 1992, 267, 1008-1014. (c)
Fosang, A. J .; Last, K.; Knauper, V.; Neame, P. J .; Murphy, G.;
Hardingham, T. E.; Tschesche, H.; Hamilton, J . A. Fibroblast
and neutrophil collagenases cleave at two sites in the cartilage
aggrecan interglobular domain. Biochem. J . 1993, 295, 273-
276. (d) Fosang, A. J .; Last, K.; Knauper, V.; Murphy, G.; Neame,
P. J . Degradation of cartilage aggrecan by collagenase-3 (MMP-
13). FEBS Lett. 1996, 380, 17-20.
(3) Tortorella, M. D.; Burn, T. C.; Pratta, M. A.; Abbaszade, I.; Hollis,
J . M.; Liu, R.; Rosenfeld, S. A.; Copeland, R. A.; Decicco, C. P.;
Wynn, R.; Rockwell, A.; Yang, F.; Duke, J . L.; Solomon, K.;
George, H.; Bruckner, R.; Nagase, H.; Itoh, Y.; Ellis, D. M.; Ross,
H.; Wiswall, B. H.; Murphy, K.; Hillman, M. C., J r.; Hollis, G.
F.; Newton, R. C.; Magolda, R. L.; Trzaskos, J . M.; Arner, E. C.
Purification and cloning of aggrecanase-1: a member of the
ADAMTS family of proteins. Science 1999, 284, 1664-1666.
(4) (a) Arner, E. C.; Hughes, C. E.; Decicco, C. P.; Caterson, B.;
Tortorella, M. D. Cytokine-induced cartilage proteoglycan deg-
radation is meadiated by aggrecanase Osteoarthritis Cartilage
1998, 6, 214-228. (b) Lohamnder, L. S.; Neame, P. J .; Sandy,
J . D.; The structure of aggrecan fragments in human synovial
fluid. Evidence that aggrecanase mediates cartilage degradation
in inflammatory joint disease, joint injury, and osteoarthritis.
Arthritis Rheum. 1993, 36, 1214-1222. (c) Sandy, J . D.; Boynton,
R. E.; Flannery, C. R. Analysis of the catabolism of aggrecan in
cartilage explants by quantitation of peptides from the three
globular domains. J . Biol. Chem. 1991, 266, 8198-205. (c) Arner,
E. C.; Pratta, M. A.; Trzaskos, J . M.; Decicco, C. P.; Tortorella,
M. D. Generation and characterization of aggrecanase. A soluble,
cartilage-derived aggrecan-degrading activity. J . Biol. Chem.
1999, 274, 6594-6601. (d) Van Meurs, J oyce B. J .; Van Lent,
Peter L. E. M.; Holthuysen, Astrid E. M.; Singer, Irwin I.; Bayne,
Ellen K.; Van den Berg, Wim B. Kinetics of aggrecanase and
metalloproteinase-induced neoepitopes in various stages of
cartilage destruction in murine arthritis. Arthritis Rheum. 1999,
42, 1128-1139. (e) Lark, Michael W.; Gordy, J ohn T.; Weidner,
J effrey R.; Ayala, J ulia; Kimura, J ames H.; Williams, Hollis R.;
Mumford, Richard A.; Flannery, Carl R.; Carlson, Steven S.; Cell-
mediated catabolism of aggrecan. Evidence that cleavage at the
“aggrecanase” site (Glu373-Ala374) is a primary event in pro-
teolysis of the interglobular domain. J . Biol. Chem. 1995, 270,
2550-6.
(5) Arner, E. C.; Pratta, M. A.; Decicco, C. P.; Xue, Chu-Biao;
Newton, R. C.; Trzaskos, J . M.; Magolda, R. L.; Tortorella, M.
D. Aggrecanase: A target for the design of inhibitors of cartilage
degradation Ann. N. Y. Acad. Sci. 1999, 878, 92-107.
(6) Michaelides, M. R.; Curtin, M. L.; Recent Advances in Matrix
Metalloproteinase Inhibitor Research. Curr. Pharm. Des. 1999,
5, 787-819.
(7) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J . H. Design
and therapeutic application of matrix metalloproteinase inhibi-
tors. Chem. Rev. 1999, 99, 2735-2776.
(8) Compound 1 was originally designed and synthesized as colla-
genase inhibitors by Dickens and co-workers; see: Dickens, J .
P.; Donald, D. K.; Kneen, G.; Mckay, W. R. [(Hydroxycarbamoyl)-
propionyl]tyrosinamides as collagenase inhibitors. U.S. Patent
4,599,361, 1986.
(20) Hirayama, R.; Yamamoto, M.; Tsukida, T.; Matsuo, K.; Obata,
Y.; Sakamoto, F.; Ikeda, S. Synthesis and Biological Evaluation
of Orally Active Matrix Metalloproteinase Inhibitors. Bioorg.
Med. Chem. 1997, 5, 765-778.
(21) MacPherson, L. J .; Bayburt, E. K.; Capparelli, M. P.; Carroll,
B. J .; Goldstein, R.; J ustice, M. R.; Zhu, L.; Hu, Shou-Ih; Melton,
R. A.; Fryer, L.; Goldberg, R. L.; Doughty, J . R.; Spirito, S.;
Blancuzzi, V.; Wilson, D.; O’Byrne, E. M.; Ganu, V.; Parker, D.
T. Discovery of CGS 27023A, a Non-Peptidic, Potent, and Orally
Active Stromelysin Inhibitor that Blocks Cartilage Degradation
in Rabbits. J . Med. Chem. 1997, 40, 2525-2532.
(22) Baenteli, R.; Brun, I.; Hall, P.; Metternich, R. A Synthesis of
the C1-N12 Tripeptide Fragment of Sanglifehrin A. Tetrahe-
dron Lett. 1999; 40, 2109-2112.
(23) Askin, D.; Wallace, M. A.; Vacca, J . P.; Reamer, R. A.; Volante,
R. P.; Shinkai, I. Highly diastereoselective alkylations of chiral
amide enolates: New routes to hydroxyethylene dipepide isos-
tere inhibitors of HIV-1 protease. J . Org. Chem. 1992, 57,
2771-2773.
(9) (a) Fosang, A. J .; Last, K.; Neame, P. J .; Murphy, G.; Knaeuper,
V.; Tschesche, H.; Hughes, C. E.; Caterson, B.; Hardingham, T.
E. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase
site E373-A374 in the interglobular domain of cartilage aggre-
can. Biochem. J . 1994, 304, 347-351. (b) Arner, Elizabeth C.;
Decicco, Carl P.; Cherney, R.; Tortorella, M. D. Cleavage of
native cartilage aggrecan by neutrophil collagenase (MMP-8) is
distinct from endogenous cleavage by aggrecanase. J . Biol.
Chem. 1997, 272, 9294-9299.
(10) Nagase, H.; Fields, G. B. Human Matrix Metalloproteanase
Specificity Studies Using Collagen Sequence Based Synthetic
Peptides. Biopolymers 1996, 40, 399-416.
J M015533C