Nucleoside/ Nucleotide Analogues as Antiviral Agents
J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 22 3719
MeOH ) 6:4) to afford 23 (3.0 g, 4.2 mmol) in 42% overall
yield: mp 223-225 °C; UV (EtOH) λmax 264 (ꢀ 17 300); 1H NMR
(CD3OD) δ 0.16 (br s, 6 H, (CH3)2Si), 1.05 (s, 9 H, (CH3)3C),
3.67-4.27 (m, 8 H, CH2N + CH2O + CH2OP + CH2P), 4.32-
4.5 (m, 3H, HC2′ + HC3′ + HC4′), 6.58 (d, J ) 4.9 Hz, 1 H,
HC1′), 8.12, 8.42 (2s, 2 H, 2 HC2), 8.27, 8.89 (2s, 2 H, 2 HC8).
Anal. Calcd (C24H38N10O10P2Si): C, H, N.
9-[5′-O-(p h osp h on o)-â-D-fu r a n osyl]a d en in e 3′-[1-(Ad -
en in -7-yleth oxy)m eth yl]p h osp h on a te (24). To a solution
of 23 (0.36 g, 0.50 mmol) in THF (5.0 mL) was added n-Bu4-
NF (1.0 M solution in THF, 0.31 g, 1.2 mmol). Acetic acid (0.50
mL) was added to the mixture after it was stirred at 25 °C for
30 min. The solvents were removed, and the residue was
purified by use of Whatman 3-MM paper with a mixture of
i-PrOH, NH4OH, and H2O (9:1:2) as the eluent. The band at
ca. Rf 0.35 was eluted with H2O and collected by lyophilization
to give 24 (0.27 g, 0.45 mmol) in 90% yield: mp >250 °C
(decomp); UV (EtOH) λmax 264 (ꢀ 18 200); 1H NMR (CD3OD) δ
3.75-4.18 (m, 8 H, CH2N + CH2O + CH2OP + CH2P), 4.29-
4.70 (m, 3H, HC2′ + HC3′ + HC4′), 6.48 (d, J ) 4.5 Hz, 1 H,
HC1′), 7.99, 8.39 (2s, 2 H, 2 HC2), 8.26, 8.83 (2s, 2 H, 2 HC8).
Anal. Calcd (C18H24N10O10P2): C, H, N.
nucleotide analogues and anti-DNA virus and anticellular
activities of nucleoside and nucleotide analogues in tissue
culture. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(1) Schaeffer, H. J .; Beauchamp, L.; de Miranda, P.; Elion, G. B.;
Bauer, D. J .; Collins, P. 9-(2-Hydroxyethoxymethyl)guanine
Activity Against Viruses of the Herpes Group. Nature (London)
1978, 272, 583-585.
(2) Ogilvie, K. K.; Cheriyan, U. O.; Radatus, B. K.; Smith, K. O.;
Galloway, K. S.; Kennell, W. L. Biologically Active Acyclonucleo-
side Analogues. II. The Synthesis of 9-[[2-Hydroxy-1-(hydroxym-
ethyl)ethoxy]methyl]guanine (BIOLF-62). Can. J . Chem. 1982,
60, 3005-3010.
(3) Ashton, W. T.; Canning, L. F.; Reynolds, G. F.; Tolman, R. L.;
Karkas, J . D.; Liou, R.; Davies, M.-E.; DeWitt, C. M.; Perry, H.
C.; Field, A. K. Synthesis and Antiherpetic Activity of (S)-, (R)-,
and (()-9-[(2,3-Dihydroxy-1-propoxy)methyl]guanine, Linear Iso-
mers of 2′-Nor-2′-deoxyguanosine. J . Med. Chem. 1985, 28, 926-
933.
(4) (a) Kim, C. U.; Misco, P. F.; Luh, B. Y.; Hitchcock, M. J . M.;
Ghazzouli, I.; Martin, J . C. A New Class of Acyclic Phosphonate
Nucleotide Analogues: Phosphonate Isosters of Acyclovir and
Ganciclovir Monophosphonates as Antiviral Agents. J . Med.
Chem. 1991, 34, 2286-2294. (b) Kim, C. U.; Luh, B. Y.; Misco,
P. F.; Bronson, J . J .; Hitchcock, M. J . M.; Ghazzouli, I.; Martin,
J . C. Acyclic Purine Phosphonate Analogues as Antiviral Agents.
Synthesis and Structure-Activity Relationships. J . Med. Chem.
1990, 33, 1207-1213. (c) De Clercq, E.; Holy, A.; Rosenburg, I.;
Sakuma, T.; Balzarini, J .; Maudgal, P. C. A Novel Selective
Broad-Spectrum Anti-DNA Virus Agents. Nature (London) 1986,
323, 464-467. (d) Pauwels, R.; Balzarini, J .; Schols, D.; Baba,
M.; Desmyter, J .; Rosenberg, I.; Holy, A.; De Clercq, E. Phos-
phonylmethoxyethyl Purine Derivatives, A New Class of Anti-
Human Immunodeficiency Virus Agents. Antimicrob. Agents
Chemother. 1988, 32, 1025-1030. (e) De Clercq, E.; Sakuma,
T.; Baba, M.; Pauwels, R.; Balzarini, J .; Rosenberg, I.; Holy, A.
Antiviral Activity of Phosphonylmethoxyalkyl Derivatives of
Purine and Pyrimidines. Antiviral Res. 1987, 8, 261-272. (f)
Baba, M.; Mori, S.; Shigeta, S.; De Clercq, E. Selective Inhibitory
Effect of (S)-9-(3-Hydroxy-2-Phosphonylmethoxypropyl)adenine
and 2′-Nor-Cyclic GMP on Adenovirus Replication In Vitro.
Antimicrob. Agents Chemother. 1987, 31, 337-339. (g) Snoeck,
R.; Sakuma, T.; De Clercq, E.; Rosenberg, I.; Holy, A. (S)-1-(3-
Hydroxy-2-Phosphonylmethoxypropyl)cytosine, A Potent and
Selective Inhibitor of Human Cytomegalovirus Replication.
Antimicrob. Agents Chemother. 1988, 32, 1839-1844. (h) Bron-
son, J . J .; Ghazzouli, I.; Hitchcock, M. J . M.; Webb, R. R.; Martin,
J . C. Synthesis and Antiviral Activity of the Nucleotide Analogue
(S)-1-[3-Hydroxy-2-(phosphonylmethoxy)propyl]cytosine. J . Med.
Chem. 1989, 32, 1457-1463. (i) Balzarini, J .; De Clercq, E.
5-Phosphoribosyl 1-Pyrophosphate Synthetase Converts the
Acyclic Nucleoside Phosphonates 9-(3-Hydroxy-2-phosphonyl-
methoxypropyl)adenine and 9-(2-Phosphonylmethoxyethyl)ad-
enine Directly to Their Antivirally Active Diphosphate Deriva-
tives. J . Biol. Chem. 1991, 266, 8686-8689 and references
therein.
9-[[(Z)-4-(Eth ylid en yl)-2,3-d im eth oxy-∆r,â-bu ten olid e]-
5′-O-p h osp h on o-â-D-fu r a n osyl]a d en in e 3′-[1-(Ad en in -7-
yleth oxy)m eth yl]p h osp h on a te (25). To a solution of 24
(0.300 g, 0.499 mmol) in DMF (20 mL) was added NaHCO3
(0.30 g, 3.6 mmol). The reaction mixture was stirred at 25 °C
under N2 for 10 min. Then, butenolide 26 (0.10 g, 0.50 mmol)
was added and the mixture was stirred under N2 for 1.0 h.
The solution was diluted with EtOAc (50 mL) and aqueous
HCl solution (1%, 40 mL). The organic layer was separated
and washed with H2O (50 mL). Then, it was dried over MgSO4
(s), filtered, and concentrated under reduced pressure. Puri-
fication by use of silica gel column chromatography with
EtOAc/MeOH (6:4) as eluant afforded 25 (0.32 g, 0.42 mmol)
in 85% yield: mp >237 °C (decomp); UV (EtOH) λmax 215 (ꢀ
16 000), λmax 264 (ꢀ 18 540); 1H NMR (CD3OD) δ 3.69-4.12
(m, 16 H, CH2N + CH2O + 2 CH2OP + CH2P + C2OCH3
+
C3OCH3), 4.31-4.78 (m, 3H, HC2′ + HC3′ + HC4′), 5.38 (t, J )
7.0 Hz, 1 H, dCH), 6.51 (d, J ) 4.8 Hz, 1 H, HC1′), 8.02, 8.40
(2s, 2 H, 2 HC2), 8.28, 8.86 (2s, 2 H, 2 HC8). Anal. Calcd
(C26H32N10O14P2): C, H, N.
[1-(Ad en in -9-ylet h oxy)m et h yl]p h osp h on o-(Z)-4-(et h -
ylid en yl)-2,3-d im eth oxy-∆r,â-bu ten olid e (28). Compound
28 (3.90 g, 8.80 mmol) was prepared in 88% yield from 4 (2.73
g, 9.99 mmol) and 26 (2.20 g, 10.0 mmol) in the same manner
that 25 was prepared from 24: mp >241 °C (decomp); Rf
(hexanes/EtOAc ) 1:2) 0.12; UV (EtOH) λmax 218 (ꢀ 13 097),
1
λmax 259 (ꢀ 14 700); H NMR (CD3OD) δ 3.57(t, J ) 6.0 Hz, 2
H, CH2N), 3.69 (d, J ) 9.0 Hz, 2 H, CH2P), 3.89 (m, 5 H, C2-
OCH3 + CH2OP), 4.06, (t, J ) 6.0 Hz, 2 H, CH2O), 4.13 (s, 3
H, C3OCH3), 5.41 (t, J ) 7.0 Hz, 1H, dCH), 8.12 (s, 1 H, HC2),
(5) (a) J a¨hne, G.; Kroha, H.; Mu¨ller, A.; Helsberg, M.; Winkler, I.;
Gross, G.; Scholl, T. Regioselective Synthesis and Antiviral
Activity of Purine Nucleoside Analogues with Acyclic Substit-
uents at N7. Angew. Chem., Int. Ed. Engl. 1994, 33, 562-563
and references therein. (b) Singh, D.; Wani, M. J .; Kumar, A. A.
Simple Solution to the Age Old Problem of Regioselective
Functionalization of Guanine: First Practical Synthesis of
Acyclic N9- and/or N7-Guanine Nucleosides Starting from N2,N9-
Diacetylguanine. J . Org. Chem. 1999, 64, 4665-4668.
(6) Geen, G. R.; Grinter, T. J .; Kincey, P. M.; J arvest, R. L. The
Effect of the C-6 Substituent of the Regioselectivity of N-
Alkylation of 2-Aminopurines. Tetrahedron 1990, 46, 6903-
6914.
8.21 (s,
1
H, HC8); MS m/z 441 (M+). Anal. Calcd
(C16H20N5O8P): C, H, N.
[1-(Gu a n in -9-ylet h oxy)m et h yl]p h osp h on o-(Z)-4-(et h -
ylid en yl)-2,3-d im eth oxy-∆r,â-bu ten olid e (29). Compound
29 (3.7 g, 8.0 mmol) was prepared in 80% yield from 27 (2.89
g, 9.99 mmol) and 26 (2.20 g, 10.0 mmol) in the same manner
that 25 was prepared from 24: mp >260 °C (decomp); Rf
(hexanes/EtOAc ) 1:2) 0.05; UV (EtOH) λmax 252 (ꢀ 11 097),
λmax 273 (ꢀ 8100); 1H NMR (CD3OD) δ 3.71(t, J ) 7.2 Hz, 2 H,
CH2N), 3.79 (d, J ) 9.1 Hz, 2 H, CH2P), 3.92 (m, 5 H, C2OCH3
+ CH2OP), 4.10, (t, J ) 7.2 Hz, 2 H, CH2O), 4.18 (s, 3 H, C3-
OCH3), 5.50 (t, J ) 6.8 Hz, 1 H, dCH), 8.76 (s, 1 H, HC8); MS
m/z 457 (M+). Anal. Calcd (C16H20N5O9P): C, H, N.
(7) Kjellberg, J .; J ohansson, N. G. Studies of the Alkylation of
Derivatives of Guanine. Nucleosides Nucleotides 1989, 8, 225-
256.
(8) (a) Meier, C.; Lorey, M.; De Clercq, E.; Balzarini, J . cyclo-Sal-
2′,3′-dideoxy-2′, 3′-didehydrothymidine Monophosphate (cycloSal-
d4TMP): Synthesis and Antiviral Evaluation of a New d4TMP
Delivery System. J . Med. Chem. 1998, 41, 1417-1427 and
references therein. (b) Hakimelahi, G. H.; Mei, N.-W.; Moosavi-
Movahedi, A. A.; Davari, H.; Hakimelahi, S.; King, K.-Y.; Hwu,
J . R.; Wen, Y.-S. Synthesis and Biological Evaluation of Purine-
Containing Butenolides. J . Med. Chem. 2001, 44, 1749-1757.
(9) Hakimelahi, G. H.; Khalafi-Nezhad, A. Catalytic Effect of
Tetrabutylammonium Fluoride in the Preparation of Secoribo-
nucleosides. Helv. Chim. Acta 1989, 72, 1495-1550.
Ack n ow led gm en t. For financial support, we thank
Academia Sinica, Shiraz Saadi Hospital, Shiraz and
Tehran Universities, Daropakhsh Pharmaceutical Com-
pany, and National Science Council of Republic of
China.
Su p p or tin g In for m a tion Ava ila ble: Two tables showing
results of the solubility and lipophilicity of nucleoside and
(10) Khorshidi, A. Doctoral Thesis in Pharmacy, Faculty of Medicine,
Isfahan University, Isfahan, Iran, 1986.