Solid-State Photocyclization of o-Alkylbenzaldehydes
J . Org. Chem., Vol. 66, No. 21, 2001 7019
δ 2.63 (s, 3H), 2.64 (s, 3H), 2.66 (s, 3H), 10.45 (s, 1H); 13C NMR
(CDCl3, 100 MHz) δ 18.2, 20.6, 24.0, 114.8, 116.2, 128.0, 133.6,
142.0, 144.3, 146.2, 192.2.
2a : Colorless solid, mp 81-82 °C; IR (KBr) cm-1 2922, 1697,
1680, 1581, 1377, 1091; 1H NMR (CDCl3, 400 MHz) δ 2.50 (s,
6H), 2.72 (s, 3H), 6.93 (s, 1H), 10.55 (s, 1H); 13C NMR (CDCl3,
100 MHz), δ 20.9, 15.3, 132.5, 133.1, 143.0, 145.1, 193.4. Anal.
Calcd for C11H12O2 (mol wt 176.22) C, 74.98; H, 6.86. Found:
C, 74.63; H, 6.71.
2b: Colorless powder, mp 150 °C (dec); IR (KBr) cm-1 2924,
2853,1695, 1555, 1442, 1261, 1204, 1067; 1H NMR (CDCl3, 400
MHz) δ 2.56 (s, 6H), 2.49 (s, 3H), 10.48 (s, 1H); 13C NMR
(CDCl3, 100 MHz) δ 15.5, 20.9, 128.8, 129.6, 135.1, 138.1,
142.7, 194.0. Anal. Calcd for C11H11BrO2 (mol wt 255.11) C,
51.79; H, 4.34. Found: C, 52.22; H, 4.55.
2c: Colorless powder, mp 155-160 °C (dec); IR (KBr) cm-1
2923, 2853, 2223, 1695, 1557, 1382, 1072; 1H NMR (CDCl3,
400 MHz) δ 2.68 (s, 3H), 2.72 (s, 6H), 10.52 (s, 2H); 13C NMR
(CDCl3, 100 MHz) δ 16.0, 18.9, 118.0, 133.9, 145.0, 147.0,
192.4.
1d -CB: IR (KBr) cm-1 3286, 2923, 1439, 1140; 1H NMR
(CDCl3, 400 MHz) δ 2.23 (s, 3H), 2.51 (s, 3H), 2.81 (d, 1H, J 1
) 14.4 Hz), 3.40 (dd, 1H, J 1 ) 14.7 Hz, J 2 ) 4.4 Hz), 5.16 (d,
1H, J ) 3.7 Hz); 13C NMR (CDCl3, 100 MHz) δ 18.2, 24.1, 41.9,
68.7, 116.5, 127.0, 133.2, 138.2, 141.2, 144.6.
1e-CB: IR (KBr) cm-1 3469, 2924, 2228, 1604, 1382, 1131;
1H NMR (CDCl3, 400 MHz) δ 2.46 (s, 3H), 2.67 (s, 3H), 3.12
(dd, 1H, J 1) 15.9 Hz, J 2 ) 1.9 Hz), 3.67 (dd, 1H, J 1 ) 15.9 Hz,
J 2 ) 4.4 Hz), 5.29 (d, 1H); 13C NMR (CDCl3, 100 MHz) δ 16.2,
20.3, 42.1, 69.4, 107.3, 114.1, 114.5, 115.6, 142.3, 145.2, 147.7,
150.4.
1f-CB: IR (KBr) cm-1 3415, 2923, 2223, 1597, 1418, 1380;
1H NMR (CDCl3, 400 MHz) δ 2.36 (s, 3H), 2.54 (s, 3H), 3.48
(dd, 1H, J 1 ) 15.9 Hz, J 2 ) 4.4 Hz), 2.93 (dd, 1H, J 1 ) 15.9
Hz, J 2 ) 2.0 Hz), 5.22 (d, 1H, d ) 22.5 Hz); 13C NMR (CDCl3,
100 MHz) δ 15.5, 21.6, 42.5, 68.2, 114.0, 116.8, 127.1, 136.5,
143.0, 144.8, 147.8.
2a -CB: IR (neat film) cm-1 3400, 2925, 1690, 1614, 1265,
1
1127; H NMR (CDCl3, 400 MHz) δ 2.24 (s, 3H), 2.54 (s, 3H),
3.08 (d, 1H, J ) 15.4 Hz), 3.72 (dd, 1H, J 1 ) 15.4 Hz, J 2 ) 3.2
Hz), 5.26 (d, 1H), 10.19 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ
17.0, 18.1, 41.9, 70.7, 116.3, 127.8, 131.9, 139.8, 144.5, 146.0,
190.2.
2b-CB: IR (KBr) cm-1 3376, 1680, 1601, 1375, 1262, 1217,
1173, 1123; 1H NMR (CDCl3, 400 MHz) δ 2.32 (s, 3H), 2.67 (s,
3H), 3.06 (dd, 1H, J 1) 15.5 Hz, J 2 ) 2.0 Hz), 3.68 (dd, 1H, J 1
) 15.6 Hz, J 2 ) 4.4 Hz), 5.29 (d, 1H), 10.19 (s, 1H); 13C NMR
(CDCl3, 100 MHz) δ 19.1, 19.5, 42.1, 71.2, 118.6, 129.6, 128.8,
140.6, 141.3, 145.2, 190.1.
2c-CB: IR (KBr) cm-1 3450, 2924, 2222, 1686, 1603, 1379,
1261, 1131; 1H NMR (CDCl3, 400 MHz) δ 2.45 (s, 3H), 2.79 (s,
3H), 3.19 (dd, 1H, J 1) 16.1 Hz, J 2 ) 4.4 Hz), 3.78 (dd, 1H, J 1
) 16.2 Hz, J 2 ) 4.4 Hz), 5.31 (d, 1H), 10.22 (s, 1H); 13C NMR
(CDCl3, 100 MHz) δ 16.4, 17.9, 42.7, 70.5, 113.4, 116.3, 128.5,
143.2, 145.3, 145.9, 150.1, 188.9.
3-CB: IR (KBr) cm-1 3406, 2924, 1672, 1377, 1261, 1098;
1H NMR (CDCl3, 400 MHz) δ 2.48 (s, 3H), 2.81 (s, 3H), 3.15
(dd, 1H, J 1 ) 16.1 Hz, J 2 ) 2.0 Hz), 3.75 (dd, 1H, J 1) 16.1 Hz,
J 2 ) 2.7 Hz), 5.33 (d, 1H, J ) 2.7 Hz), 10.31 (s, 1H), 10.55 (s,
1H).
3: Colorless solid, mp 170 °C (dec); IR (KBr) cm-1 2885, 1689,
1557, 1418, 1387, 1069; 1H NMR (CDCl3, 400 MHz) δ 2.58 (s,
9H), 10.56 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 16.2, 134.9,
143.1, 194.2. Anal. Calcd for C12H12O3 (mol wt 204.23) C, 70.57;
H, 5.92. Found: C, 70.94; H, 5.73.
In clu sion Com p lex F or m a tion betw een Mesita ld e-
h yd e 1a a n d th e Host Diol. The crystals of the inclusion
complex between 1a and diol were easily grown by slow
evaporation of their solution (2.5:1 equiv) in CH2Cl2-C6H6 (1:
1) at room temperature. The stoichiometry of the complex was
established to be 1:2 (host:guest) from integrations of the
characterstic signals of the host and guest in the 1H NMR
spectrum.
Solu tion -Sta te P h otolysis. The benzene solutions (100
mL, ca. 5 mM) of aldehydes 1c,d , 2a -c, and 3 were purged
with a stream of N2 gas for 15 min and irradiated in the
Rayonet reactor (λ ) 350 nm) for 24 h. The photolysates were
periodically monitored by TLC. In all the cases, excepting 1c,
the TLC analysis indicated the formation of several products
and the cyclobutenols were not readily identifiable. In the case
of 1c, the formation of a single product was clearly observed.
Silica gel chromatography (10% EtOAc/petroleum ether) of the
photolysate afforded a colorless crystalline product in 25%
yield, which was subsequently characterized from 1H and 13C
NMR analyses as the phthalide 4.25 1H NMR (CDCl3, 400 MHz)
δ 2.62 (s, 3H), 2.70 (s, 3H), 5.33 (s, 2H), 7.24 (s, 1H); 13C NMR
(CDCl3, 100 MHz) δ 17.6, 20.7, 16.8, 104.6, 114.5, 122.5, 132.9,
144.8, 148.3, 150.9, 169.2.
P r ep a r a tive Solid -Sta te P h otolysis. In a typical reaction,
ca. 100 mg of the gently ground aldehyde was dispersed in a
Pyrex container and purged with a stream of nitrogen gas for
15-10 min. The solid sample was subsequently irradiated,
under a nitrogen gas atmosphere, in a Rayonet reactor fitted
with 350 nm lamps for 24 h. After this period, the irradiated
mixture was subjected to silica gel column chromatography.
The combined fractions from the chromatography correspond-
ing to the cyclobutenol were stripped off the solvent in vacuo
at room temperature and characterized.
The benzocyclobutenol from the solid-state photolysis of the
complex of mesitaldehydes 1a and diol host was established
by comparison of its spectral data with those documented in
the literature.24 All of the cyclobutenols exhibited similar
spectral characteristics.
1b-CB: IR (KBr) cm-1 3301, 2920, 1462, 1202, 1169; 1H
NMR (CDCl3, 400 MHz) δ 2.13 (s, 3H), 2.26 (s, 3H), 2.81 (d, J
) 14 Hz, 1H), 3.41 (dd, J 1 )14 Hz, J 2 ) 4.4 Hz, 1H), 5.10 (d,
J ) 4.4 Hz, 1H), 6.82 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ
16.0, 22.5, 42.0, 68.5, 115.7, 123.5, 131.3, 138.7, 142.5, 144.4.
1c-CB: IR (KBr) cm-1 3434, 2924, 2224, 1610, 1457, 1401,
1296, 1219; 1H NMR (CDCl3, 400 MHz) δ 2.38 (s, 3H), 2.45 (s,
3H), 2.94 (d, J ) 15.2 Hz, 1H), 3.51 (dd, 1H, J 1 )15.2 Hz, J 2
) 4.7 Hz), 5.23 (d, 1H, 4.4 Hz), 6.86 (s, 1H); 13C NMR (CDCl3,
100 MHz) δ 15.5, 21.5, 42.2, 69.9, 111.8, 117.4, 122.7, 130.1,
137.1, 144.2, 146.9.
Tem p er a tu r e-Dep en d en t Solid -Sta te P h otolysis. For
examining the temperature dependence on the yields of the
photoreactions, two portions of the same sample (1d or 1e)
were dispersed in NMR tubes and purged with a N2 gas for
15 min. The irradiation of each at a particular temperature
was conducted by focusing the Pyrex-filtered radiation from
high-pressure Hg-lamp on to the sample held in a quartz
Dewar Vessel equipped with a window (Applied Photophysics
Limited). The bath temperature in the Dewar was externally
controlled. During low temperature photolysis, the condensate
that formed on the window of the Dewar flask was constantly
removed by blowing hot air from a dryer. The whole setup was
maintained undisturbed during the photolysis at two different
temperatures, except for changing the NMR tubes containing
the samples. In three independent experiments, a similar
trend in the yields, i.e., the yield at low temperature (-80 °C)
was significantly lower than that at room temperature (30 °C),
was observed.
Ack n ow led gm en t. We thank Department of Sci-
ence and Technology (DST), New Delhi, for financial
support. P.M. gratefully acknowledges the J unior Re-
search Fellowship (J RF) from Council of Scientific and
Industrial Research, New Delhi.
Su p p or tin g In for m a tion Ava ila ble: The crystallographic
data for 1a -diol complex and 1e, and summary output files
of AM1 calculations. This material is available free of charge
J O015718R