4
Tetrahedron Letters
dihalides are still undergoing, and the results will be reported in
due course.
Acknowledgments
The National Natural Science Foundation of China
(21502131), Science & Technology Department of Sichuan
Province (2018JZ0061, 2018HH0128), Education Department of
Sichuan Province (18CZ0024), Sichuan University of Science
and Engineering (2017RCL03) and Sichuan Youth Plan (2017,
2018) are greatly acknowledged for funding this work.
[15] (a) N. Hadei, G.T. Achonduh, C. Valente, C.J. O'Brien, M.G. Organ,
Angew. Chem. Int. Ed. 50 (2011) 3896-3899;
References and notes
(b) O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 131
(2009) 12078-12079.
[16] (a) N.A. Eberhardt, H. Guan, Chem. Rev. 116 (2016) 8373-8426;
(b) R.G. Pearson, Chem. Rev. 85 (1985) 41-49;
(c) F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 545
(2017) 84-88.
[17] (a) A.E. Carpenter, A.J. McNeece, B.R. Barnett, A.L. Estrada, C.C.
Mokhtarzadeh, C.E. Moore, A.L. Rheingold, C.L. Perrin, J.S. Figueroa,
J. Am. Chem. Soc. 136 (2014) 15481-15484;
[1] (a) S. Patai, Z. Rappoport, The Chemistry of halides, pseudo-halides, and
azides, John Wiley & Sons: New York, 1995;
(b) N. Kambe, T. Iwasaki, J. Terao, Chem. Soc. Rev. 40 (2011) 4937-
4947;
(c) M.R. Netherton, G.C. Fu, Adv. Syn. Catal. 346 (2004) 1525-1532;
(d) R.J. Kulawiec, R.H. Crabtree, Coordin. Chem. Rev. 99 (1990) 89-115;
(e) W.F. Bailey, J.J. Patricia, J. Organomet. Chem. 352 (1988) 1-46.
[2] (a) C.D. Ritchie, Can. J. Chem. 64 (1986) 2239-2250;
(b) E.S. Rudakov, I.V.e. Kozhevnikov, V.V. Zamashchikov, Russ. Chem.
Rev. 43 (1974) 305-316.
(b) A.K. Dash, T.R. Jensen, C.L. Stern, T.J. Marks, J. Am. Chem. Soc.
126 (2004) 12528-12540.
[3] (a) E.D. SosaꢀCarrizoꢁ, F.M. Bickelhauptꢁ, I. Fernández, Chem. Eur. J. 21
(2015) 14362-14369;
[18] (a) C. Gennari, U. Piarulli, Chem. Rev. 103 (2003) 3071-3100;
(b) K. Ding, H. Du, Y. Yuan, J. Long, Chem. Eur. J. 10 (2004) 2872-
2884;
(b) J.M. Concellón, H. Rodríguez-Solla, Chem. Soc. Rev. 33 (2004) 599-
609.
(c) M.T. Reetz, Angew. Chem. Int. Ed. 47 (2008) 2556-2588;
(d) Z. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264-
2278;
(e) L. An, Y.-L. Xiao, Q.-Q. Min, X. Zhang, Angew. Chem. Int. Ed. 54
(2015) 9079-9083;
(f) X.-P. Fu, Y.-L. Xiao, X. Zhang, Chin. J. Chem. 36 (2018) 143-146;
(g) J. Sheng, H.-Q. Ni, G. Liu, Y. Li, X.-S. Wang, Org. Lett. 19 (2017)
4480-4483;
[4] (a) J.F. Garst, M.P. Soriaga, Coordin. Chem. Rev. 248 (2004) 623-652;
(b) H. Walborsky, Acc. Chem. Res. 23 (1990) 286-293.
[5] (a) M. Newcomb, Tetrahedron 49 (1993) 1151-1176;
(b) P.J. Kropp, Acc. Chem. Res. 17 (1984) 131-137;
(c) C.P. Andrieux, I. Gallardo, J.M. Saveant, J. Am. Chem. Soc. 111
(1989) 1620-1626;
(d) M. Newcomb, R.M. Sanchez, J. Kaplan, J. Am. Chem. Soc. 109
(1987) 1195-1199;
(e) G.A. Russell, D.W. Lamson, J. Am. Chem. Soc. 91 (1969) 3967-3968.
[6] (a) Z. Ye, K.E. Gettys, X. Shen, M. Dai, Org. Lett. 17 (2015) 6074-6077;
(b) G. Zhang, Y. Ma, G. Cheng, D. Liu, R. Wang, Org. Lett. 16 (2014)
656-659;
(h) J. Sheng, H.-Q. Ni, H.-R. Zhang, K.-F. Zhang, Y.-N. Wang, X.-S.
Wang, Angew. Chem. Int. Ed. 57 (2018) 7634-7639.
[19] (a) S. Winstein, E.L. Allred, J. Sonnenberg, J. Am. Chem. Soc. 81
(1959) 5833-5833;
(b) E.L. Allred, J. Sonnenberg, S. Winstein, J. Org. Chem. 25 (1960) 26-
29.
[20] (a) J. An, R.M. Denton, T.H. Lambert, E.D. Nacsa, Org. Biomol. Chem.
12 (2014) 2993-3003;
(b) T. Squires, W. Schmidt, C. McCandlish Jr, J. Org. Chem. 40 (1975)
134-136;
(c) R. Appel, Angew. Chem. Int. Ed. 14 (1975) 801-811.
[21] D.J. Wilger, J.-M.M. Grandjean, T.R. Lammert, D.A. Nicewicz, Nat.
Chem. 6 (2014) 720-726.
(c) G. Qian, X. Hong, B. Liu, H. Mao, B. Xu, Org. Lett. 16 (2014) 5294-
5297;
(d) K. Noriki, I. Masatoshi, T. Shohei, S. Takao, Chem. Lett. 40 (2011)
1231-1232;
(e) X. Lin, F. Zheng, F.-L. Qing, Organometallics 31 (2011) 1578-1582;
(f) T. Maji, A. Karmakar, O. Reiser, J. Org. Chem. 76 (2010) 736-739;
(g) A.G. neé Puri, R.K. Bankhwal, Synth. Commun. 27 (1997) 1801-
1809.
[7] (a) M.L. Franco, D.E.C. Ferreira, H.F.D. Santos, W.B. De Almeida, J.
Chem. Theory Comput. 4 (2008) 728-739;
[22] We found that these pyridinyl or bipyridinyl ligands were inert toward
o
DCE even at elevated temperature (70 C) which further illustrated the
(b) C. Trindle, P. Crum, K. Douglass, J. Phys. Chem. A 107 (2003) 6236-
6242;
(c) K.B. Wiberg, T.A. Keith, M.J. Frisch, M. Murcko, J. Phys. Chem. 99
(1995) 9072-9079;
possibilities of their coordination with the Ni cores to form
a
combinatorial catalytic system. For selected examples of combinatorial
ligand systems for promoting nickel-catalyzed coupling reactions, see
ref. 18d-18h and references listed here:
(d) K.B. Wiberg, M.A. Murcko, K.E. Laidig, P.J. MacDougall, J. Phys.
Chem. 94 (1990) 6956-6959;
(a) D.A. Everson, R. Shrestha, D.J. Weix, J. Am. Chem. Soc. 132 (2010)
920-921.
(e) K.B. Wiberg, M.A. Murcko, J. Phys. Chem. 91 (1987) 3616-3620;
(f) W.L. Jorgensen, R.C. Binning Jr, B. Bigot, J. Am. Chem. Soc. 103
(1981) 4393-4399;
(b) D.A. Everson, B.A. Jones, D.J. Weix, J. Am. Chem. Soc. 134 (2012)
6146-6159.
(c) Y.-L. Xiao, Q.-Q. Min, C. Xu, R.-W. Wang, X. Zhang, Angew.
Chem. Int. Ed. 55 (2016) 5837-5841.
(g) S. Wolfe, Acc.Chem. Res. 5 (1972) 102-111.
[8] O. Vechorkin, Z. Csok, R. Scopelliti, X. Hu, Chem. Eur. J. 15 (2009)
3889-3899.
[9] V.P. Ananikov, ACS Catal. 5 (2015) 1964-1971.
[10] X. Hu, Chem. Sci. 2 (2011) 1867-1886.
[11] C.-Y. Lin, P.P. Power, Chem. Soc. Rev. 46 (2017) 5347-5399.
[12] S.Z. Tasker, E.A. Standley, T.F. Jamison, Nature 509 (2014) 299-309.
[13] G.C. Fu, ACS Cent. Sci. 3 (2017) 692-700.
[14] (a) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 374 (2016) 1-29;
(b) J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2 (2015)
1411-1421;
(d) X. Wang, G. Ma, Y. Peng, C.E. Pitsch, B.J. Moll, T.D. Ly, X. Wang,
H. Gong, J. Am. Chem. Soc. 140 (2018) 14490-14497.
[23] C. Xu, W.-H. Guo, X. He, Y.-L. Guo, X.-Y. Zhang, X. Zhang, Nat.
Commun. 9 (2018) 1170. This Ni/bidentate ligand ratio could be
advantageous for the generation of NiI catalytic species (Figure 2a).
[24] Study on the relative reactivities of p-substituted arylboronic acids in this
chloroethylation via Hammett correlation is ongoing in our lab. The
preliminary results indicated that the relative reactivities increased with
increasing electron-withdrawing abilities of the p-substituents of the
arylboronic acids.
(c) Y. Budnikova, D. Vicic, A. Klein, Inorganics 6 (2018) 18.
(d) A. Devasagayaraj, T. Stüdemann, P. Knochel, Angew. Chem. Int. Ed.
34 (1996) 2723-2725.
(e) F. González-Bobes, G.C. Fu, J. Am. Chem. Soc. 128 (2006) 5360-
5361.
[25] (a) P.A. Cox, M. Reid, A.G. Leach, A.D. Campbell, E.J. King, G.C.
Lloyd-Jones, J. Am. Chem. Soc. 139 (2017) 13156-13165.
(b) P.A. Cox, A.G. Leach, A.D. Campbell, G.C. Lloyd-Jones, J. Am.
Chem. Soc. 138 (2016) 9145-9157.
(c) G. Noonan, A.G. Leach, Org. Biomol. Chem. 13 (2015) 2555-2560.
(d) H.G. Kuivila, K.V. Nahabedian, J. Am. Chem. Soc. 83 (1961) 2164-
2166.
(f) J. Zhou, G.C. Fu, J. Am. Chem. Soc. 126 (2004) 1340-1341.
(g) S.L. Zultanski, G.C. Fu, J. Am. Chem. Soc. 135 (2013) 624-627.