2282 Chiefari et al.
Macromolecules, Vol. 36, No. 7, 2003
Ack n ow led gm en t. We are grateful to Drs. C. Berge,
M. Fryd, and R. Matheson of DuPont Performance
Coatings for their support of this work and for valuable
discussion. We thank Ngoc Le for assistance in carrying
out the polymerizations with N,N-diethyl S-benzyl
dithiocarbamate.
Su p p or tin g In for m a tion Ava ila ble: A figure showing
the atom numbering for a table giving a summary of the
geometry and atomic charges for the thiocarbonylthio group
of methyl RAFT agents (ZC(dS)S-CH3) from Gaussian 98
calculations with MP2/D95 basis set and text giving Gaussian
archive entries for the optimized geometries with 3/21G*,
6/31G*, MP2/D95, and B3LYP/6-31G* basis sets. This material
is available free of charge via the Internet at http://
pubs.acs.org.
F igu r e 8. Plot of logarithm of transfer coefficient (of ZC(d
S)S-CH2Ph) vs calculated LUMO energy for methyl RAFT
agents (ZC(dS)S-CH3). Values from AM1 calculations (0), ab
initio calculations with Gaussian 98 and 3/21G* (O), 6/31G*
(2) or MP2/D95 (1) basis sets, or density functional calcula-
tions with basis set B3LYP/6-31G* (9).
Refer en ces a n d Notes
(1) Krstina, J .; Moad, G.; Rizzardo, E.; Winzor, C. L.; Berge, C.
T.; Fryd, M. Macromolecules 1995, 28, 5381-5.
(2) Krstina, J .; Moad, C. L.; Moad, G.; Rizzardo, E.; Berge, C.
T.; Fryd, M. Macromol. Symp. 1996, 111, 13-23.
(3) Chiefari, J .; Chong, Y. K.; Ercole, F.; Krstina, J .; J effery, J .;
Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.;
Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998,
31, 5559-62.
(4) Chong, B. Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang,
S. H. Macromolecules 1999, 32, 2071-4.
(5) Rizzardo, E.; Chiefari, J .; Chong, Y. K.; Ercole, F.; Krstina,
J .; J effery, J .; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.;
Moad, C. L.; Moad, G.; Thang, S. H. Macromol. Symp. 1999,
143, 291-307.
(6) Rizzardo, E.; Chiefari, J .; Mayadunne, R. T. A.; Moad, G.;
Thang, S. H. ACS Symp. Ser. 2000, 768, 278-96.
(7) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J .; Moad, G.;
Thang, S. H. Macromolecules 1999, 32, 6977-80.
(8) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J .; Krstina, J .;
Moad, G.; Postma, A.; Thang, S. H. Macromolecules 2000,
33, 243-5.
(9) Moad, G.; Chiefari, J .; Krstina, J .; Postma, A.; Mayadunne,
R. T. A.; Rizzardo, E.; Thang, S. H. Polym. Int. 2000, 49, 933-
1001.
(10) Goto, A.; Sato, K.; Tsujii, Y.; Fukuda, T.; Moad, G.; Rizzardo,
E.; Thang, S. H. Macromolecules 2001, 34, 402-8.
(11) Barner-Kowollik, C.; Quinn, J . F.; Nguyen, T. L. U.; Heuts,
J . P. A.; Davis, T. P. Macromolecules 2001, 34, 7849-57.
(12) Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Macromol.
Rapid Commun. 2000, 21, 1035-9.
through the plane of the CdS bond is very small (∼0.2
kJ mol-1).
Factors which enhance the rate of free radical addi-
tion to the CdS double bond of 1 will, in general, also
reduce the rate of fragmentation of the adduct 4
(Scheme 1). For efficient chain transfer both addition
and fragmentation are required to be facile. A slow
overall rate of fragmentation is one possible cause of
retardation.9,31 Rates of polymerization in the present
study show no marked dependence on Z and are only
slightly reduced for the dithiobenzoates (RdPh) over
those seen with other Z substituents. The retardation
with these RAFT agents appears independent of R (the
yield after 16 h with 2a or 3a is ca. 53% vs ca. 60-65%
with most other RAFT agentssTables 1 and 2). The
more severe retardation seen with high concentrations
of dithiobenzoate RAFT agents is dependent on R and
has therefore been associated with slow fragmentation
of the initial adduct (4).9,29 The smaller retardation seen
here may be associated with slow fragmentation of the
adduct 6. Other work suggests that slow fragmentation,
by itself, is unlikely to be responsible for retardation.32,44
If, however, fragmentation is slower there is a greater
likelihood that side reactions involving 4 and/or 6 such
as reversible or irreversible coupling with other radicals
will assume greater importance.11,29,30,32
(13) Ladaviere, C.; Doerr, N.; Claverie, J . P. Macromolecules 2001,
34, 5370-2.
(14) Donovan, M. S.; Lowe, A. B.; Sumerlin, B. S.; McCormick, C.
L. Macromolecules 2002, 35, 4123-32.
(15) Chong, Y. K.; Krstina, J .; Le, T. P. T.; Moad, G.; Rizzardo,
E.; Thang, S. H. Macromolecules 2003, 36, 2256.
(16) Some results mentioned in this paper have been published
previously as part of a conference paper.9
Con clu sion s
The effect of varying the substituent Z of RAFT agents
1 on the course of RAFT polymerization has been
examined. In general, the transfer coefficients of the
RAFT agents decreases in the order dithiobenzoates >
trithiocarbonates ∼ dithioalkanoates > dithiocarbonates
(xanthates) > dithiocarbamates. RAFT agents with
electrophilic Z substituents with lone pairs directly
conjugated to the CdS double bond (O-, N<) have low
transfer coefficients. However, electron-withdrawing
groups on O or N (in particular, groups able to delocalize
the nitrogen lone pair in the case of dithiocarbamates)
can significantly enhance the activity of RAFT agents
to modify the above order. The relative effectiveness of
the RAFT agents is rationalized in terms of interaction
of the Z substituent with the CdS double bond to
activate or deactivate that group toward free radical
addition. Semiempirical molecular orbital calculations
and the estimated LUMO energies or heats of reaction
can be used in a qualitative manner to predict relative
activity of RAFT agents.
(17) Leung, M.-K.; Hsieh, D.-T.; Lee, K.-H.; Liou, J .-C. J . Chem.
Res. Synop. 1995, 478-9.
(18) Katritzky, A. R.; Lewis, J .; Musumarra, G.; Ogretir, G. Chim.
Acta Turc. 1976, 4, 71-80.
(19) Takeshima, T.; Ikeda, M.; Yokoyama, M.; Fukada, N.; Mu-
raoka, M. J . Chem. Soc., Perkin Trans. I 1979, 692-5.
(20) Wakamori, S.; Yoshida, Y.; Tsuchidate, T.; Ishii, Y. Agric.
Biol. Chem. 1969, 33, 1691-9.
(21) Otsu, T.; Kuriyama, A. Polym. Bull. (Berlin) 1984, 11, 135-
42.
(22) Fuchigami, T.; Chen, C. S.; Nomaka, T.; Yen, M. Y.; Tien, H.
J . Bull. Chem. Soc. J pn. 1986, 59, 487-91.
(23) Oae, S.; Yagihara, T.; Okabe, T. Tetrahedron 1972, 28, 3203-
16.
(24) Oddo, B.; Alberti, C. Gazz. Chim. Ital. 1938, 68, 204-14.
(25) Moad, G.; Rizzardo, E. Macromolecules 1995, 28, 8722-8.
(26) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J . R.; Zakrzewski, V. G.; J . A.
Montgomery, J .; Stratmann, R. E.; Burant, J . C.; Dapprich,
S.; Millam, J . M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.;
Farkas, O.; Tomasi, J .; Barone, V.; Cossi, M.; Cammi, R.;
Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski,
J .; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,