10.1002/anie.201911952
Angewandte Chemie International Edition
COMMUNICATION
Southgate, D. Sarlah, Org. Biomol. Chem. 2016, 14, 5454; e) A. Barrett,
T.-K. Ma, T. Mies, Synthesis 2019, 51, 67.
potential through-space electrostatic stabilization and disrupting
direct donation. These changes are reflected in an increased
dipole moment (4.3 D vs 3.4 D).[16] Distal attack is also less
favoured, presumably due to increased distance between the
forming cation and the carbonyl.[17] This model also explains the
lack of selectivity observed with (E)-alkenes, as the alkyl group
occupies an equatorial position in both proximal arrangements
without disrupting the positioning of the carbonyl (Figure 2B).[18]
The model was then extended to the full bicyclization process
(Figure 2C). For dimethylphenyl substrate 4b, bicyclization from
the iminium proceeds via the proximal, chair-like transition state
(G‡ = 10.6 kcal/mol relative to the iminium) to give a discrete
monocyclic intermediate cation, which then proceeds via
electrophilic aromatic substitution (G‡ = 12.0 kcal/mol, +4.7
kcal/mol relative to the cation) to the eventual product. The
corresponding pathway for the minor isomer was computed to
have a 13.3 kcal/mol barrier for the cyclization step and 11.6
kcal/mol barrier for the trapping step. Intriguingly, calculations on
the corresponding dimethoxy substrate 4a suggest that its
bicyclization may be a concerted, non-synchronous process
[3]
[4]
E. J. Corey, D. D. Staas, J. Am. Chem. Soc. 1998, 120, 3526.
a) K. Ishihara, S. Nakamura, H. Yamamoto, J. Am. Chem. Soc. 1999,
121, 4906; b) S. Nakamura, K. Ishihara, H. Yamamoto, J. Am. Chem.
Soc. 2000, 122, 8131; c) K. Ishihara, H. Ishibashi, H. Yamamoto, J. Am.
Chem. Soc. 2001, 123, 1505; d) K. Ishihara, H. Ishibashi, H. Yamamoto,
J. Am. Chem. Soc. 2002, 124, 3647; e) H. Ishibashi, K. Ishihara, H.
Yamamoto, J. Am. Chem. Soc. 2004, 126, 11122; f) K. Kumazawa, K.
Ishihara, H. Yamamoto, Org. Lett. 2004, 6, 2551; g) A. Sakakura, M.
Sakuma, K. Ishihara, Org. Lett. 2011, 13, 3130; h) K. Surendra, E. J.
Corey, J. Am. Chem. Soc. 2012, 134, 11992; i) Y.-J. Zhao, S. S. Chng,
T.-P. Loh, J. Am. Chem. Soc. 2007, 129, 492; j) Y.-J. Zhao, T.-P. Loh, J.
Am. Chem. Soc. 2008, 130, 10024; k) Y.-J. Zhao, B. Li, L.-J. S. Tan, Z.-
L. Shen, T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 10242; l) L. Fan, C.
Han, X. Li, J. Yao, Z. Wang, C. Yao, W. Chen, T. Wang, J. Zhao,
Angew. Chem. 2018, 130, 2137; Angew. Chem. Int. Ed. 2018, 57, 2115.
a) A. Sakakura, A. Ukai, K. Ishihara, Nature 2007, 445, 900; b) S. A.
Snyder, D. S. Treitler, A. Schall, Tetrahedron 2010, 66, 4796; c) R. C.
Samanta, H. Yamamoto, J. Am. Chem. Soc. 2017, 139, 1460; d) Z. Tao,
K. A. Robb, K. Zhao, S. E. Denmark, J. Am. Chem. Soc. 2018, 140,
3569.
[5]
[6]
a) S. G. Sethofer, T. Mayer, F. D. Toste, J. Am. Chem. Soc. 2010, 132,
8276; b) M. A. Schafroth, D. Sarlah, S. Krautwald, E. M. Carreira, J. Am.
Chem. Soc. 2012, 134, 20276; c) N. A. Cochrane, H. Nguyen, M. R.
Gagné, J. Am. Chem. Soc. 2012, 135, 628; d) J. G. Sokol, N. A.
Cochrane, J. J. Becker, M. R. Gagné, Chem. Commun. 2013, 49, 5046;
e) M. J. Geier, M. R. Gagné, J. Am. Chem. Soc. 2014, 136, 3032; f) H.
Nguyen, M. R. Gagné, ACS Catalysis 2014, 4, 855; g) C. H. McCulley,
M. J. Geier, B. M. Hudson, M. R. Gagné, D. J. Tantillo, J. Am. Chem.
Soc. 2017, 139, 11158.
(see Supporting Information).
mechanism is presumably due to the greater nucleophilicity of
the arene which promotes barrierless trapping and is
This potential change in
a
consistent with the reduced amounts of (Z)→trans crossover
and EtOH trapping products observed compared to 4b.
In summary, we have developed the first iminium ion-
catalyzed polyene cyclization and the first examples of highly
enantioselective
bicyclizations
to
form
cis-decalins.
[7]
[8]
R. R. Knowles, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132,
5030.
Computations suggest that the enantioselectivity is influenced by
the catalysts’ ability to stabilize positive charge as it develops
during the cyclization via electrostatics and/or direct -
framework donation. This complements methods that use π-
cation interactions to influence the reaction and will impact future
catalyst design. Additionally, our studies highlight the
remarkable differences that remote stereocenters can have on
the outcome of polyene cyclizations and underscores the fact
that olefin geometry must be carefully considered when
developing asymmetric catalysts.
a) S. Rendler, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 5027-
5029; b) D. Yang, B.-F. Zheng, Q. Gao, S. Gu, N.-Y. Zhu, Angew.
Chem. 2006, 118, 261-264; Angew. Chem. Int. Ed. 2006, 45, 255-258.
a) N. Shoji, A. Umeyama, M. Teranaka, S. Arihara, J. Nat. Prod. 1996,
59, 448; b) C. F. Chyu, H. C. Lin, Y. H. Kuo, Chem. Pharm. Bull. 2005,
53, 11; c) N. F. Z. Schneider, C. Cerella, C. M. O. Simoes, M. Diederich,
Molecules 2017, 22, 1932.
[9]
[10] a) A. Van der Gen, K. Wiedhaup, J. Swoboda, H. C. Dunathan, W. S.
Johnson, J. Am. Chem. Soc. 1973, 95, 2656; b) J. Dijkink, W. N.
Speckamp, Tetrahedron 1978, 34, 173; c) M. B. Groen, B. Hindriksen,
F. J. Zeelen, Rec. Trav. Chim. Pays Bas 1982, 101, 148; d) R. L.
Snowden, J. C. Eichenberger, S. M. Linder, P. Sonnay, C. Vial, K. H.
Schulte-Elte, J. Org. Chem. 1992, 57, 955; e) C. Tsangarakis, E.
Arkoudis, C. Raptis, M. Stratakis, Org. Lett. 2007, 9, 583.
Acknowledgements
[11] a) G. Ohloff, F. Näf, R. Decorzant, W. Thommen, E. Sundt, Helv. Chim.
Acta 1973, 56, 1414-1448; b) S. Murata, T. Suzuki, Tetrahedron Lett.
1990, 31, 6535.
The authors thank the Natural Sciences and Engineering
Research Council of Canada for funding and Hayden Foy and
Travis Dudding (Brock University) for help with AIM calculations.
[12] a) D. Kaldre, J. L. Gleason, Angew. Chem. 2016, 128, 11729; Angew.
Chem. Int. Ed. 2016, 55, 11557; b) F. Larnaud, A. Sulpizi, N. O.
Häggman, J. M. E. Hughes, D. F. Dewez, J. L. Gleason, Eur. J. Org.
Chem. 2017, 2017, 2637; c) N. O. Häggman, B. Zank, H. Jun, D.
Kaldre, J. L. Gleason, Eur. J. Org. Chem. 2018, 2018, 5412.
Keywords: polyene cyclization • cis-decalin • hydrazide •
organocatalysis • asymmetric catalysis
[13] Reactions using stronger acids such as TfOH produced a greater
proportion of byproducts and lower isolated yields.
[1]
a) R. B. Woodward, K. Bloch, J. Am. Chem. Soc. 1953, 75, 2023; b) A.
Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, Helv. Chim. Acta 1955,
38, 1890; c) G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77,
5068; d) P. A. Stadler, A. Eschenmoser, H. Schinz, G. Stork, Helv.
Chim. Acta 1957, 40, 2191.
[14] Reactions in EtOH form a mixture of aldehyde and diethyl acetal
products. All acetals are hydrolyzed by treatment of the concentrated
reaction mixture with TFA/H2O/CHCl3 prior to workup.
[15] The use of higher amounts of HFIP (e.g. 5%) resulted in decreased
enantioselectivity.
[2]
a) W. S. Johnson, Angew. Chem. 1976, 88, 33; Angew. Chem. Int. Ed.
1976, 15, 9; b) R. A. Yoder, J. N. Johnston, Chem. Rev. 2005, 105,
4730; c) S. A. Snyder, A. M. Levinson, (Eds.: P. Knochel, G. A.
Molander), Elsevier Ltd., 2013, pp. 268; d) C. N. Ungarean, E. H.
[16] Although a steric component also seems possible, calculations on the
corresponding saturated (neutral) cyclohexane predict that the
diastereomer with the axial methyl group proximal to the carbonyl group
This article is protected by copyright. All rights reserved.