3396
M. Dixit et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3394–3397
mined according to the method of Goldstein et al.16
Activity of PTPase (LAR) was evaluated using p-nitro-
phenylphosphate (PNPP) as the substrate. Assay mix-
ture was made up to 1 mL containing 10 mM PNPP in
50 mM HEPES buffer (pH 7), with 1 mM EDTA and
DTT. The reaction was stopped by the addition of
500 lL of 0.1 N NaOH and absorbance was determined
Curchod, M. L.; Gobert, R. P.; Arkinstall, S.; Hooft van
Huijsduijnen, R. J. Biol. Chem. 2000, 275, 9792.
4. (a) Szczepankiewicz, B. G.; Liu, G.; Hajduk, P. J.; Abad-
Zapatero, C.; Pei, Z.; Xin, Z.; Lubben, T. H.; Trevillyan,
J. M.; Stashko, M. A.; Ballaron, S. J.; Liang, H.; Huang,
F.; Hutchins, C. W.; Fesik, S. W.; Jirousek, M. R. J. Am.
Chem. Soc. 2003, 125, 4087; (b) Liu, G.; Xin, Z.; Pei, Z.;
Hajduk, P. J.; Abad-Zapatero, C.; Hutchins, C. W.; Zhao,
H.; Lubben, T. H.; Ballaron, S. J.; Haasch, D. L.;
Kaszubska, W.; Rondinone, C. M.; Trevillyan, J. M.;
Jirousek, M. R. J. Med. Chem. 2003, 46, 4232.
5. (a) Burke, T. R., Jr.; Kole, H. K.; Roller, P. P. Biochem.
Biophys. Res. Commun. 1994, 204, 129; (b) Taylor, W. P.;
Zhang, Z.-Y.; Widlanski, T. S. Bioorg. Med. Chem. 1996,
4, 1515; (c) Taylor, S. D.; Kotoris, C. C.; Dinaut, A. N.;
Wang, Q.; Ramachandran, C.; Huang, Z. Bioorg. Med.
Chem. 1998, 6, 1457; (d) Taing, M.; Keng, Y.-F.; Shen, K.;
Wu, L.; Lawrence, D. S.; Zhang, Z.-Y. Biochemistry 1999,
38, 3793; (e) Shen, K.; Keng, Y.-F.; Wu, L.; Guo, X.-L.;
Lawrence, D. S.; Zhang, Z.-Y. J. Biol. Chem. 2001, 276,
47311.
6. (a) Ye, B.; Akamatsu, M.; Shoelson, S. E.; Wolf, G.;
Giogetti-Peraldi, S.; Yan, X.; Roller, P. P.; Burke, T. R.,
Jr. J. Med. Chem. 1995, 38, 4270; (b) Burke, T. R., Jr.;
Ye, B.; Akamatsu, M.; Ford, H.; Yan, X. J.; Kole, H.
K.; Wolf, G.; Shoelson, S. E.; Roller, P. P. J. Med.
Chem. 1996, 39, 1021; (c) Akamatsu, M.; Roller, P. P.;
Chen, L.; Zhang, Z.-Y.; Ye, B.; Burke, T. R., Jr. Bioorg.
Med. Chem. 1997, 5, 157; (d) Roller, P. P.; Wu, L.;
Zhang, Z.-Y.; Burke, T. R., Jr. Bioorg. Med. Chem. Lett.
1998, 8, 2149.
7. (a) Sarmiento, M.; Wu, L.; Keng, Y.-Y.; Song, L.; Luo,
Z.; Huang, Z.; Wu, G.-Z.; Yuan, A. K.; Zhang, Z.-Y. J.
Med. Chem. 2000, 43, 146; (b) Iversen, L. F.; Andersen, H.
S.; Branner, S.; Mortensen, S. B.; Peters, G. H.; Norris,
K.; Olsen, O. H.; Jeppesen, C. B.; Lundt, B. F.; Ripka, W.;
Møller, K. B.; Møller, N. P. H. J. Biol. Chem. 2000, 275,
10300; (c) Wrobel, J.; Li, Z.; Sredy, J.; Sawicki, D. R.;
Seestaller, L.; Sullivan, D. Bioorg. Med. Chem. Lett. 2000,
10, 1535; (d) Chen, Y. T.; Onaran, M. B.; Doss, C. J.;
Seto, C. T. Bioorg. Med. Chem. Lett. 2001, 11, 1935; (e)
Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.
X.; McDevitt, R.; Adebayo, F. O.; Sawicki, D. R.;
Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem.
2000, 43, 1293.
at 410 nm.
A
molar extinction coefficient of
1.78 · 104 MÀ1 cmÀ1 was used to calculate the concen-
tration of p-nitrophenolate ions produced in the reac-
tion mixture.
The structure–activity relationship of the screened 4-alk-
oxy-2-hydroxyacetophenones revealed that bulky non-
polar moiety at the terminus of alkyl group possesses
good inhibitory activity (38.6%). None of the benzoyl-
ated acetophenones (3a–c) and their corresponding
chalcones (4a–c) showed inhibition except 3a, which
showed little activity. Various benzofuran derivatives
have shown to possess PTP1B inhibitory activity in the
low micromolar range.17 Thus, various hydroxy benzo-
furan methyl ketones and their benzoylated derivatives
have been evaluated as PTP1B inhibitors. It is evident
from the activity profile that 4-aroyloxy-5-acetyl-
benzofuran (8a–c), showed good inhibitory activity
comparable to reference compound sodium vanadate.
One of these compounds, 4-(3,4-dichlorobenzoyloxy)-
5-acetyl-benzofuran (8b), showed 54% inhibition against
PTP1B at 100 lM concentration. The rest of the com-
pounds were either inactive or possessed a low range
activity.
In conclusion, we have identified a series of functional-
ized acetophenones as protein tyrosine phosphatase
inhibitors. This is an initial report and optimization of
these compounds is in progress.
Acknowledgments
We thank Sophisticated Analytical Instrumentation
Facility (SAIF) for providing spectral data of synthe-
sized compounds. The financial support from CSIR,
New Delhi is gratefully acknowledged.
8. (a) Moran, E. J.; Sarshr, S.; Cargill, J. E.; Shahbaz, M. M.;
Lio, A.; Mjalli, A. M. M.; Armstrong, R. W. J. Am. Chem.
Soc. 1995, 117, 10787; (b) Cao, X.; Moran, E. J.; Siev, D.;
Lio, A.; Ohashi, C.; Mjalli, A. M. M. Bioorg. Med. Chem.
Lett. 1995, 5, 2953.
9. Umezawa, K.; Kawakami, M.; Watanabe, T. Pharmacol.
Ther. 2003, 99, 15.
References and notes
10. Arabaci, G.; Guo, X.-C.; Beebe, K. D.; Coggeshall, K. M.;
Pei, D. J. Am. Chem. Soc. 1999, 121, 5085.
11. Shim, Y. S.; Kim, K. C.; Chi, D. Y.; Lee, K.-H.; Cho, H.
Bioorg. Med. Chem. Lett. 2003, 13, 2561.
12. Chen, R. M.; Hu, L. H.; An, T. Y.; Li, J.; Shen, Q. Bioorg.
Med. Chem. Lett. 2002, 12, 3387.
13. Goel, A.; Dixit, M. Synlett 2004, 1990.
1. (a) Ostman, A.; Bohmer, F. D. Trends Cell Biol. 2001, 11,
258; (b) Denu, J. M.; Dixon, J. E. Curr. Biol. 1998, 2, 633;
(c) Zhan, X.-L.; Wishart, M. J.; Guan, K.-L. Chem. Rev.
2001, 101, 2477; (d) Zhang, Z.-Y. Curr. Opin. Chem. Biol.
2001, 5, 416; (e) Neel, B. G.; Tonks, N. K. Curr. Opin. Cell
Biol. 1997, 9, 193.
2. (a) Elchelby, M.; Payette, P.; Michaliszyn, E.; Cromlish,
W.; Collins, S.; Lee Loy, A.; Normandin, D.; Cheng, A.;
Himms-Hagen, J.; Chan, C.-C.; Ramanchandran, C.;
Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P. Science
1999, 283, 1544; (b) Kennedy, B. P. Biomed. Pharma-
cother. 1999, 53, 466.
3. (a) Kenner, K. A.; Anyanwu, E.; Olefsky, J. M.; Kusari, J.
J. Biol. Chem. 1996, 271, 19810; (b) Chen, H.; Wertheimer,
S. J.; Lin, C. H.; Katz, S. L.; Amrein, K. E.; Burn, P.;
Quon, M. J. J. Biol. Chem. 1997, 272, 8026; (c) Walchli, S.;
14. General procedure for the synthesis of compounds 2, 3
and 4: A mixture of 2,4-dihydroxy-acetophenone (1,
6 mmol, 912 mg) with alkyl halide (6 mmol) and potas-
sium carbonate (2 equiv) was refluxed in acetone for 8–
10 h. The resulting mixture was filtered to remove the
potassium carbonate. The filtrate was concentrated to
dryness to get the pure compound (2) in 60–70% yield. An
acetophenone derivative (2, 6 mmol) and aroyl chloride
(6 mmol) in dry pyridine (5 mL) was stirred at room
temperature for an hour before heating at 100 ꢁC for