1344
L. Shen et al.
LETTER
(11) (a) Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V.;
In addition, using methyl acetoacetate and acetyl acetone
instead of ethyl acetoacetate also gave good yields of the
expected products (Table 3, 3i–k).
De Micheli, C. Tetrahedron 2007, 63, 5554. (b) Heller, S.
T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675. (c) Aggarwal,
V. K.; de Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68,
5381. (d) Mohamed Ahmed, M. S.; Kobayashi, K.; Mori, A.
Org. Lett. 2005, 7, 4487.
In conclusion, a one-pot process to afford diversified fully
substituted pyrazoles via a three-component reaction of
aldehydes, phenylhydrazine, and 1,3-dicarbonyl com-
pounds using ytterbium perfluorooctanoate [Yb(PFO)3]
as catalyst under solvent-free conditions has been devel-
oped. Its relatively broad scope, operational simplicity,
and the recycle of the catalyst make it more attractive for
the diversity-oriented synthesis of these heterocycle li-
braries.
(12) (a) Suen, Y. F.; Hope, H.; Nantz, M. H.; Haddadin, M. J.;
Kurth, M. J. J. Org. Chem. 2005, 70, 8468. (b) Stauffer, S.
R.; Katzenellenbogen, J. A. J. Comb. Chem. 2000, 2, 318.
(c) Gosselin, F.; O’Shea, P. D.; Webster, R. A.; Reamer, R.
A.; Tillyer, R. D.; Grabowski, E. J. J. Synlett 2006, 19, 3267.
(13) (a) Molander, G. A. Chem. Rev. 1992, 92, 29. (b) Bartoli,
G.; Bosco, M.; Marcantoni, E.; Nobili, F.; Sambri, L. J. Org.
Chem. 1997, 62, 4183. (c) Cappa, A.; Marcantoni, E.;
Torregiani, E.; Bartoli, G.; Bellucci, C. M.; Bosco, M.;
Sambri, L. J. Org. Chem. 1999, 64, 5696.
Acknowledgment
(14) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.
Chem. Rev. 2002, 102, 2227.
(15) Wang, L.; Han, J.; Sheng, J.; Tian, H.; Fan, Z. Catal.
Commun. 2005, 6, 201.
(16) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72, 1263.
(17) Suzuki, I.; Suzumura, Y.; Takeda, K. Tetrahedron Lett.
2006, 47, 7861.
(18) Kamitori, Y.; Hojo, M.; Yamamoto, K. J. Heterocycl. Chem.
1993, 30, 389.
Financially supports from National Key Project for Basic Research
(2003CB114405), the National High Technology Research and De-
velopment Program of China (863 Program, 2006AA10A201), the
Shanghai Foundation of Science of Technology (073919107),
Shanghai Leading Academic Discipline Project (B507), and the
Shanghai Education Commission are kindly acknowledged.
(19) (a) Bhatnagar, I.; George, M. V. Tetrahedron 1968, 24,
1293. (b) Mallouk, S.; Bougrin, K.; Doua, H.; Benhida, R.;
Soufiaoui, M. Tetrahedron Lett. 2004, 45, 4143.
(20) Pratapan, S.; Scaria, P. M.; Bhattacharyya, K.; Das, P. K.;
George, M. V. J. Org. Chem. 1986, 51, 1972.
References and Notes
(1) Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.; Swaney,
S. M.; Tarpley, W. G.; Yagi, Y.; Romero, D. L. J. Med.
Chem. 2000, 43, 1034.
(21) Shah, J. N.; Shah, C. K. J. Org. Chem. 1978, 43, 1266.
(22) Experimental
(2) Yang, J.; Gharagozloo, P.; Yao, J.; Ilyin, V. I.; Carter, R. B.;
Nguyen, P.; Robledo, S.; Woodward, R. M.; Hogenkamp, D.
J. J. Med. Chem. 2004, 47, 1547.
Benzaldehyde and phenylhydrazine were freshly distilled
before used. The catalyst Yb(PFO)3 was prepared according
to ref. 15; other chemicals were purchased commercially and
used without further purification. Melting points were
recorded in open capillary using Büchi melting point B540
apparatus and were uncorrected. The 1H NMR and 13C NMR
spectra were recorded on a Bruker AM-400 spectrometer
(400 MHz and 100 MHz, respectively) using TMS as
internal standard. High-resolution mass spectra (HRMS)
were recorded under electron-impact conditions using a
MicroMass GCT CA 055 instrument.
(3) Dawood, K. M.; Abdel-Gawad, H.; Rageb, E. A.; Ellitheyc,
M.; Mohamed, H. A. Bioorg. Med. Chem. 2006, 14, 3672.
(4) Dinges, J.; Albert, D. H.; Arnold, L. D.; Ashworth, K. L.;
Akritopoulou-Zanze, I.; Bousquet, P. F.; Bouska, J. J.;
Cunha, G. A.; Davidsen, S. K.; Diaz, G. J.; Djuric, S. W.;
Gasiecki, A. F.; Gintant, G. A.; Gracias, V. J.; Harris, C. M.;
Houseman, K. A.; Hutchins, C. W.; Johnson, E. F.; Li, H.;
Marcotte, P. A.; Martin, R. L.; Michaelides, M. R.; Nyein,
M.; Sowin, T. J.; Su, Z.; Tapang, P. H.; Xia, Z.; Zhang, H.
Q. J. Med. Chem. 2007, 50, 2011.
(23) General Procedure for the One-Pot Syntheses of
Pyrazoles
(5) (a) Patrice, D.; Long, N. D. FR 2745466, 1997; Chem. Abstr.
1997, 126, 18871. (b) Li, Y.; Zhang, H.; Liu, J.; Yang, X.;
Liu, Z. J. Agric. Food Chem. 2006, 54, 3636. (c) Nebel, K.;
Brunner, H.; Pissiotas, G.; Tuleja, J. EP 0839808, 1998;
Chem. Abstr. 1998, 128, 321641. (d) Toru, K.; Masayuki,
M.; Kenichi, N.; Akihiro, H. WO 2005077934, 2005; Chem.
Abstr. 2005, 143, 229846.
(6) (a) Lahm, G. P.; Selby, T. P.; Freudenberger, J. H.;
Stevenson, T. M.; Myers, B. J.; Seburyamo, G.; Smith, B.
K.; Flexner, L.; Clark, C. E.; Cordova, D. Bioorg. Med.
Chem. Lett. 2005, 15, 4898. (b) Lahm, G. P.; McCann, S. F.;
Patel, K. M.; Selby, T. P.; Stevenson, T. M. WO 03015518,
2003; Chem. Abstr. 2003, 138, 200331.
(7) Wisniewski, M. Z.; Surga, W. J.; Opozda, E. M. Transition
Met. Chem. 1994, 19, 353.
(8) (a) Shawali, A. S.; Hassaneen, H. M. Tetrahedron 1973, 29,
121. (b) Al-Saleh, F. S.; Al Khawaja, I. K.; Joule, J. A.
J. Chem. Soc., Perkin Trans. 1 1980, 642. (c) Huisgen, R.;
Grashey, R.; Gotthardt, H.; Schmidt, R. Angew. Chem. 1962,
74, 29.
To the appropriate aldehyde 1 (1 mmol), phenylhydrazine (1
mmol) was added dropwise. The mixture was stirred for 0.5
h, 1,3-dicarbonyl compound 2 (1.2 mmol) and Yb(PFO)3
(0.1 mmol) were added, the mixture was heated at 120 °C for
another 1–1.5 h. After the reaction was complete (monitored
by TLC), the mixture was cooled to r.t., CH2Cl2 (3 mL) was
added, the catalyst recovery was accomplished simply by
filtration and drying in air or under vacuum. The filtrate was
washed with sat. aq NaCl solution and dried over anhydrous
Na2SO4, filtered, and concentrated under reduced pressure to
leave the crude product which was recrystallized by EtOAc
and hexane to give the pure compound. If necessary, the
product was purified by chromatography over SiO2.
(24) Typical Data for a Representative Compound: Ethyl 1-
Phenyl-3-(4-bromophenyl)-5-methylpyrazole-4-
carboxylate (3b)
White solid, mp 60.8–61.3 °C. 1H NMR (400 MHz, CDCl3):
d = 7.58 (d, J = 8.4 Hz, 2 H), 7.52–7.51 (m, 4 H), 7.48–7.46
(m, 3 H), 4.27 (q, J = 7.2 Hz, 2 H), 2.59 (s, 3 H), 1.26 (t,
J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 163.9,
152.4, 145.0, 138.6, 132.1, 131.1, 130.8, 129.3, 128.8,
125.8, 122.5, 110.5, 60.1, 14.1, 12.8. HRMS: m/z calcd for
C19H17BrN2O2 [M+]: 384.0473; found: 384.0473.
(9) Minunni, G. Gazz. Chim. Ital. 1928, 58, 691.
(10) (a) Huang, Y. R.; Katzenellenbogen, J. A. Org. Lett. 2000, 2,
2833. (b) Budzisz, E.; Malecka, M.; Nawrot, B. Tetrahedron
2004, 60, 1749.
Synlett 2008, No. 9, 1341–1344 © Thieme Stuttgart · New York