Journal of the American Chemical Society
Page 8 of 10
Singlet Fission Chromophores Utilizing a Combination of
Ground-State and Excited-State Aromaticity Rules. J. Am. Chem.
Soc. 2020, 142, 5602–5617.
Hecht, S. o-Fluoroazobenzenes as Readily Synthesized Pho-
toswitches Offering Nearly Quantitative Two-Way Isomerization
with Visible Light. J. Am. Chem. Soc. 2012, 134, 20597–20600.
(c) Shao, B.; Qian, H.; Li, Q.; Aprahamian, I. Structure Property
Analysis of the Solution and Solid-State Properties of Bistable
Photochromic Hydrazones. J. Am. Chem. Soc. 2019, 141, 8364−
8371.
1
2
3
4
(12) Energetics of ESA: Ueda, M.; Jorner, K.; Sung, Y. M.; Mori, T.;
Xiao, Q.; Kim, D.; Ottosson, H.; Aida, T.; Itoh, Y. Energetics of
Baird aromaticity supported by inversion of photoexcited chiral
[4n]annulene derivatives. Nat. Commun. 2017, 8, 346.
5
6
7
8
(13) Oxepin(exp): Shukla, D.; Wan, P. Evidence for a Planar Cycli-
cally Conjugated 8p System in the Excited State: Large Stokes
Shift Observed for Dibenz[b,f]oxepin Fluorescence. J. Am. Chem.
Soc. 1993, 115, 2990–2991.
(14) Oxepin(calc): Toldo, J.; Bakouri, O. E.; Solà, M.; Norrby, P.-O.;
Ottosson, H. Is Excited-State Aromaticity a Driving Force for Pla-
narization of Dibenzannelated 8p-Electron Heterocycles.
ChemPlusChem 2019, 84, 712–721.
(7) Changing aromatic rings: (a) Irie, M.; Mohri, M. Thermally ir-
reversible photochromic systems. Reversible photocyclization of
diarylethene derivatives. J. Org. Chem. 1988, 53, 803–808. (b)
Yamashita, H.; Ikezawa, T.; Kobayashi, Y.; Abe, J. Photochromic
Phenoxyl-Imidazolyl Radical Complexes with Decoloration
Rates from Tens of Nanoseconds to Seconds. J. Am. Chem. Soc.
2015, 137, 4952–4955. (c) Tasaki, S.; Momotake, A.; Kanna, Y.;
Sato, T.; Nishimura, Y.; Arai, T. Producing a dual-fluorescent
molecule by tuning the energetics of excited-state intramolecular
proton transfer. Photochem. Photobiol. Sci. 2015, 14, 1864–1871.
(8) Replacing heteroatoms: (a) Fu, M.; Xiao, Y.; Qian, X.; Zhao,
D.; Xu, Y. A design concept of long-wavelength fluorescent ana-
logs of rhodamine dyes: replacement of oxygen with silicon atom.
Chem. Commun. 2008, 1780–1782. (b) Koide, Y.; Urano, Y.; Ha-
naoka, K.; Piao, W.; Kusakabe, M.; Saito, N.; Terai, T.; Okabe,
T.; Nagano, T. Development of NIR Fluorescent Dyes Based on
Si–rhodamine for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134,
5029–5031. (c) Hammerich, M.; Schütt, C.; Stähler, C.; Lentes,
P.; Röhricht, F.; Höppner, R.; Herges, R. Heterodiazocines: Syn-
thesis and Photochromic Properties, Trans to Cis Switching
within the Bio-optical Window. J. Am. Chem. Soc. 2016, 138,
13111–13114. (d) Wang, C.; Taki, M.; Sato, Y.; Fukazawa, A.;
Higashiyama, T.; Yamaguchi, S. Super-Photostable Phosphole-
Based Dye for Multiple-Acquisition Stimulated Emission Deple-
tion Imaging. J. Am. Chem. Soc. 2017, 139, 10374–10381.
(9) Providing internal steric constraint: (a) Kishimoto, Y.; Abe, J.
A Fast Photochromic Molecule That Colors Only under UV Light.
J. Am. Chem. Soc. 2009, 131, 4227–4229. (b) Siewertsen, R.;
Neumann, H; Buchheim-Stehn, B.; Herges, R.; Näther, C.; Renth,
F.; Temps, F. Highly Efficient Reversible Z-E Photoisomerization
of a Bridged Azobenzene with Visible Light through Resolved
S1(nπ*) Absorption Bands. J. Am. Chem. Soc. 2009, 131, 15594–
15595. (c) Fukumoto, S.; Nakashima, T.; Kawai, T. Photon-Quan-
titative Reaction of a Dithiazolylarylene in Solution. Angew.
Chem. Int. Ed. 2011, 50, 1565–1568.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) FLAP-COT: (a) Yamakado, T.; Takahashi, S.; Watanabe, K.;
Matsumoto, Y.; Osuka, A.; Saito, S. Conformational Planariza-
tion versus Singlet Fission: Distinct Excited-State Dynamics of
Cyclooctatetraene-Fused Acene Dimers. Angew. Chem. Int. Ed.
2018, 57, 5438–5443. (b) Hada, M.; Saito, S.; Tanaka, S.; Sato,
R.; Yoshimura, M.; Mouri, K.; Matsuo, K.; Yamaguchi, S.; Hara,
M.; Hayashi, Y.; Röhricht, F.; Herges, R.; Shigeta, Y.; Onda, K.;
Miller, J. D. Structural Monitoring of the Onset of Excited-State
Aromaticity in a Liquid Crystal Phase. J. Am. Chem. Soc. 2017,
139, 15792–15800. (c) Kotani, R.; Sotome, H.; Okajima, H.;
Yokoyama, S.; Nakaike, Y.; Kashiwagi, A.; Mori, C.; Nakada, Y.;
Yamaguchi, S.; Osuka, A.; Sakamoto, A.; Miyasaka, H.; Saito, S.
Flapping viscosity probe that shows polarity-independent rati-
ometric fluorescence. J. Mater. Chem. C 2017, 5, 5248–5256.
(16) Dihydrophenazine: (a) Zhang, Z.; Song, W.; Su, J.; Tian, H. Vi-
bration-Induced Emission (VIE) of N,N’-Disubstituted-Dihy-
dribenzo[a,c]phenazines: Fundamental Understanding and
Emerging Applications. Adv. Funct. Mater. 2019, 1902803. (b)
Chen, W.; Chen, C.-L.; Zhang, Z.; Chen, Y.-A.; Chao, W.-C.; Su,
J.; Tian, H.; Chou, P.-T. Snapshotting the Excited-State Planari-
zation of Chemically Locked N,N’-Disubstituted-Dihydrodi-
benzo[a,c]phenazines. J. Am. Chem. Soc. 2017, 139, 1636–1644.
(c) Zhang, Z.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su,
J.; Tian, H.; Chou, P.-T. Excited-State Conformational/Electronic
Responses of Saddle-Shaped N,N’-Disubstituted-Dihydrodi-
benzo[a,c]phenazines: Wide-Tuning Emission from Red to Deep
Blue and White Light Combination. J. Am. Chem. Soc. 2015, 137,
8509–8520. (d) Schuster, G. B.; Schmidt, S. P.; Dixon, B. G. Pho-
tophysics of N,N-Dimethyldihydrophenazine and Benzoannelated
Analogues. Structurally Dependent Excited-State Hierarchy. J.
Phys. Chem. 1980, 84, 1841–1843.
(17) Phenothiazine: Chen, D.-G.; Chen, Y.; Wu, C.-H.; Chen, Y.-A.;
Chen, M.-C.; Lin, J.-A.; Huang, C.-Y.; Su, J.; Tian, H.; Chou, P.-
T. Phenothiazine Scope: Steric Strain Induced Planarization and
Excimer formation. Angew. Chem. Int. Ed. 2019, 58, 13297–
13301.
(18) Dibenzoarsepin: Kawashima, I.; Imoto, H.; Ishida, M.; Furuta,
H.; Yamamoto, S.; Mitsuishi, M.; Tanaka, S.; Fujii, T.; Naka, K.
Dibenzoarsepins: Planarization of 8p-Electron System in the
Lowest Singlet Excited State. Angew. Chem. Int. Ed. 2019, 58,
11686–11690.
(19) COT angle: Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.;
Irle, S.; Yamaguchi, S. Hybridization of a Flexible Cyclooctatet-
raene Core and Rigid Aceneimide Wings for Multiluminescent
Flapping p Systems. Chem. Eur. J. 2014, 20, 2193–2200.
(20) Acene: Sun, Z.; Wu, J. Higher Order Acenes and Fused Acenes
with Near-infrared Absorption and Emission. Aust. J. Chem. 2011,
64, 519–528
(21) Photoresponse in crystals: (a) Naumov, P; Karothu, D. P.; Ah-
med, E.; Catalano, L.; Commins, P.; Halabi, J. M.; Al-Handawi,
M. B.; Li, Liang .The Rise of the Dynamic Crystals. J. Am. Chem.
Soc. 2020, 142, 13256–13272. (b) Hoshino, M.; Uchida, E.; Nori-
kane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi,
S.; Koshihara, S. Crystal Melting by Light: X-ray Crystal Struc-
ture Analysis of an Azo Crystal Showing Photoinduced Crystal-
(10) Baird rule: Baird, N. C. Quantum Organic Photochemistry. II.
3
Resonance and Aromaticity in the Lowest pp* State of Cyclic
Hydrocarbons. J. Am. Chem. Soc. 1972, 94, 4941–4948.
(11) Baird aromaticity: (a) Rosenberg, M.; Dahlstrand, C.; Kilså, K.;
Ottosson, H. Excited State Aromaticity and Antiaromaticity: Op-
portunities for Photophysical and Photochemical Rationalizations.
Chem. Rev. 2014, 114, 5379–5425. (b) Oh, J.; Sung, Y. S.; Hong,
Y.; Kim. D. Spectroscopic Diagnosis of Excited-State Aromatic-
ity: Capturing Electronic Structures and Conformations upon Ar-
omaticity Reversal. Acc. Chem. Res. 2018, 51, 1349–1358. (c) Liu,
C.; Ni, Y.; Lu, X.; Li, G.; Wu. J., Global Aromaticity in Macro-
cyclic Polyradicaloids: Hückel’s Rule or Baird’s Rule?. Acc.
Chem. Res. 2019, 52, 2309–2321. (d) Rosenberg, M.; Ottosson,
H. Kilså, K. Influence of excited state aromaticity in the lowest
excited singlet states of fulvene derivatives. Phys. Chem. Chem.
Phys. 2011, 13, 12912–12919. (e) Sung, Y. M.; Yoon, M.-C.; Lim,
J. M.; Rath, H.; Naoda, K.; Osuka, A.; Kim, D. Reversal of Hückel
(anti)aromaticity in the lowest triplet states of hexaphyrins and
spectroscopic evidence for Baird’s rule. Nat. Chem. 2015, 7, 418–
422. (f) Oh, J.; Sung, Y. M.; Mori, H.; Park, S.; Jorner, K.; Ot-
tosson, H.; Lim, M.; Osuka, A.; Kim, D. Unraveling Excited-Sin-
glet-State Aromaticity via Vibrational Analysis. Chem 2017, 3,
870–880. (g) Wu, C.-H.; Karas, L. J.; Ottosson, H.; Wu J. I-C.
Excited-state proton transfer relieves antiaromaticity in molecules.
Proc. Natl. Acad. Sci. USA. 2019, 116, 20303–20308. (h) Wang,
J.; Oruganti, B.; Durbeej, B. A Straightforward Route to Aromatic
Excited States in Molecular Motors that Improves Photochemical
Efficiency. ChemPhotoChem 2019, 3, 450–460. (i) Bakouri, O.
E.; Smith, J. R.; Ottosson, H. Strategies for Design of Potential
ACS Paragon Plus Environment