Asym m etr ic P r oton a tion of Keton e
En ola tes Usin g Ch ir a l â-Hyd r oxyeth er s:
Acid ity-Tu n ed En a n tioselectivity
B. Moon Kim,* Hyunwoo Kim, Woosung Kim,
Keun Young Im, and J in Kyoon Park
School of Chemistry, Seoul National University,
Seoul, 151-747, South Korea
F IGURE 1. Asymmetric protonation of enolates using various
chiral alcohols as proton donors.
kimbm@snu.ac.kr
Received J anuary 30, 2004
Abstr a ct: New chiral hydroxyethers 1a -f were prepared
for asymmetric protonation of achiral enolates prepared from
prochiral ketones. The enantioselectivity of protonation was
highly dependent upon the acidity of the chiral alcohols, the
highest enantioselectivity (90% ee) being achieved with 3,5-
dichloro-substituted â-hydroxyether 1c. A salt-free enolate
generated from trimethylsilyl enol ether 4 provided product
of the highest ee. Unlike other reagents, chloro-substituted
alcohols provided almost consistent enantioselections through-
out the reaction temperatures examined (-25 to -98 °C).
Protonation of other aromatic ketones showed selectivity
similar to that of 2-methyl-1-tetralone.
Enantioselective protonation is one of the most efficient
approaches for obtaining optically active R-substituted
carbonyl compounds since a chiral proton source can be
recovered and reused.1 Many stoichiometric and catalytic
chiral proton donors for enantioselective protonation of
prochiral enolates have been developed. Among many
reagents used for the asymmetric protonation, chiral
alcohols and amines have been employed most fre-
quently. As depicted in Figure 1, most chiral alcohols
contain various functional groups such as carbonyl (A),2-5
amino (B),6-8 sulfinyl (C),9,10 and selenoxy (D)11 groups
adjacent to the hydroxyl moiety to assist in better
chelation of the metal from the enolate. Among these,
the sulfinyl directing group (C) has proven to be most
effective, allowing for exceedingly enantioselelctive (up
to 99% ee’s) protonation.9,10 It appears that these groups
F IGURE 2. Chiral hydroxyethers 1a -f and 2 and Molecular
modeling of (S,S)-1a . Geometry was optimized at PM3 using
the PC Spartan Pro program.
coordinate to the metal of the enolate and discriminate
two enantiotopic faces in the protonation step. However,
proton donors composed of chiral â-hydroxy ethers (E)
are rare,12 presumably due to the common acceptance
that the ether functionality is not effective as a ligand
for metals.
(1) For recent reviews, see: (a) Eames, J .; Weerasooriya, N. Tetra-
hedron: Asymmetry 2001, 12, 1-24. (b) Yanagisawa, A.; Yamamoto,
H. In Comprehensive Asymmetric Catalysis; J acobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer: Berlin, 1999; pp 1295. (c) Yanag-
isawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411. (d) Fehr, C.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2566.
(2) Matsumoto, K.; Ohta, H. Tetrahedron Lett. 1991, 32, 4729.
(3) (a) Gerlach, U.; Haubenreich, T.; Hu¨nig, S. Chem. Ber. 1994,
127, 1969. (b) Gerlach, U.; Haubenreich, T.; Hu¨nig, S. Chem. Ber. 1994,
127, 1981. (c) Gerlach, U.; Haubenreich, T.; Hu¨nig, S.; Klauzer, N.
Chem. Ber. 1994, 127, 1989.
(4) (a) Cavelier, F.; Gomez, S.; J acquier, R.; Verducci, J . Tetrahe-
dron: Asymmetry 1993, 4, 2501. (b) Cavelier, F.; Gomez, S.; J acquier,
R.; Verducci, J . Tetrahedron Lett. 1994, 35, 2891.
(5) Fuji, K.; Kawabata, T.; Kuroda, A. J . Org. Chem. 1995, 60, 1914.
(6) Fujihara, H.; Tomioka, K. J . Chem. Soc., Perkin Trans. 1 1999,
2377.
(7) (a) Fehr, C.; Stempf, I.; Galindo, J . Angew. Chem., Int. Ed. Engl.
1993, 32, 1042. (b) Fehr, C.; Galindo, J . Helv. Chim. Acta 1995, 78,
539. (c) Fehr, C.; Galindo, J . Angew. Chem., Int. Ed. Engl. 1994, 33,
1888.
(8) Toussaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron Lett.
1987, 28, 539.
(9) (a) Kosugi, H.; Hoshino, K.; Uda, H. Tetrahedron Lett. 1997, 38,
6861. (b) Kosugi, H.; Abe, M.; Hatsuda, R.; Uda, H.; Kato, M. Chem.
Commun. 1997, 1857.
We envisioned that if both the alcohol and the ether
oxygen atoms of 1a 13 are employed to bind a metal, a
(10) (a) Asensio, G.; Aleman, P. A.; Domingo, L. R.; Medio-Simo´n,
M. Tetrahedron Lett. 1998, 39, 3277. (b) Asensio, G.; Aleman, P.;
Cuenca, A.; Gil, J .; Medio-Simo´n, M. Tetrahedron: Asymmetry 1998,
9, 4073. (c) Asensio, G.; Aleman, P.; Gil, J .; Domingo, L. R.; Medio-
Simo´n, M. J . Org. Chem. 1998, 63, 9342. (d) Asensio, G.; Cuenca, A.;
Gavin˜a, P.; Medio-Simo´n, M. Tetrahedron Lett. 1999, 40, 3939.
(11) (a) Takahashi, T.; Nakao, N.; Koizumi, T. Chem. Lett. 1996,
207. (b) Takahashi, T.; Nakao, N.; Koizumi, T. Tetrahedron: Asym-
metry 1997, 8, 3293.
(12) Chiral oligo(hydroxy ethers) have been used in the protonation
of samarium enolates generated from SmI2-mediated reactions of
ketone derivatives. See: (a) Takeuchi, S.; Miyoshi, N.; Ohgo, Y. Chem.
Lett. 1992, 551. (b) Takeuchi, S.; Ohira, A.; Miyoshi, N.; Mashio, H.;
Ohgo, Y. Tetrahedron: Asymmetry 1994, 5, 1763. (c) Nakamura, Y.;
Takeuchi, S.; Ohgo, Y.; Yamaoka, M.; Yoshida, A.; Mikami, K.
Tetrahedron Lett. 1997, 38, 2709. (d) Mikami, K.; Yamaoka, M.;
Yoshida, A. Synlett 1998, 607. (e) Takeuchi, S.; Nakamura, Y.; Ohgo,
Y.; Curran, D. P. Tetrahedron Lett. 1998, 39, 8691. (f) Nakamura, Y.;
Takeuchi, S.; Ohgo, Y.; Yamaoka, M.; Yoshida, A.; Mikami, K.
Tetrahedron 1999, 55, 4595. (g) Nakamura, Y.; Takeuchi, S.; Ohgo,
Y.; Curran, D. P. Tetrahedron 2000, 56, 351.
(13) Kim, B. M.; Park, J . K. Bull. Kor. Chem. Soc. 1999, 20, 744.
10.1021/jo0498258 CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/30/2004
5104
J . Org. Chem. 2004, 69, 5104-5107