Journal of the American Chemical Society
Communication
(8) (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New
Strategies for Organic Catalysis: The First Highly Enantioselective
Organocatalytic Diels−Alder Reaction. J. Am. Chem. Soc. 2000, 122,
4243−4244. (b) Northrup, A. B.; MacMillan, D. W. C. The First
General Enantioselective Catalytic Diels−Alder Reaction with Simple
α,β-Unsaturated Ketones. J. Am. Chem. Soc. 2002, 124, 2458−2460.
(c) Hayashi, Y.; Samanta, S.; Gotoh, H.; Ishikawa, H. Asymmetric
Diels−Alder Reactions of α,β-Unsaturated Aldehydes Catalyzed by a
Diarylprolinol Silyl Ether Salt in the Presence of Water. Angew. Chem.,
Int. Ed. 2008, 47, 6634−6637.
ACKNOWLEDGMENTS
■
Generous support from the Max Planck Society, the Deutsche
Forschungsgemeinschaft (Leibniz Award to B.L.), the Fonds
der Chemischen Industrie (Kekule Fellowship to M.T.), and
the European Research Council (Advanced Grant “C−H Acids
for Organic Synthesis, CHAOS”) are gratefully acknowledged.
This work is part of the Cluster of Excellence RESOLV (EXC
1069) funded by the DFG. We thank the technicians of our
́
̈
group, especially Arno Dohring for large-scale preparation of
(9) Nakashima, D.; Yamamoto, H. Design of Chiral N-Triflyl
Phosphoramide as a Strong Chiral Brønsted Acid and Its Application
to Asymmetric Diels−Alder Reaction. J. Am. Chem. Soc. 2006, 128,
9626−9627.
cyclopentadiene. Also special thanks to the GC, NMR, and
HPLC departments of our institute for their excellent service.
REFERENCES
̈
(10) Allgauer, D. S.; Jangra, H.; Asahara, H.; Li, Z.; Chen, Q.; Zipse,
■
H.; Ofial, A. R.; Mayr, H. Quantification and Theoretical Analysis of
the Electrophilicities of Michael Acceptors. J. Am. Chem. Soc. 2017,
139, 13318−13329.
̈
(1) (a) Diels, O.; Alder, K. Uber die Ursachen der Azoesterreaktion.
Liebigs Ann. Chem. 1926, 450, 237−254. (b) Diels, O.; Alder, K.
Synthesen in der hydroaromatischen Reihe. Liebigs Ann. Chem. 1928,
460, 98−122.
̈
(11) Gatzenmeier, T.; van Gemmeren, M.; Xie, Y.; Hofler, D.;
Leutzsch, M.; List, B. Asymmetric Lewis acid organocatalysis of the
Diels−Alder reaction by a silylated C−H acid. Science 2016, 351,
949−952.
(2) (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. The Diels−Alder Reaction in Total Synthesis.
Angew. Chem., Int. Ed. 2002, 41, 1668−1698. (b) Takao, K.-i.;
Munakata, R.; Tadano, K.-i. Recent Advances in Natural Product
Synthesis by Using Intramolecular Diels−Alder Reactions. Chem. Rev.
2005, 105, 4779−4807. (c) Cao, M.-H.; Green, N. J.; Xu, S.-Z.
Application of the aza-Diels-Alder reaction in the synthesis of natural
products. Org. Biomol. Chem. 2017, 15, 3105−3129.
(12) (a) Mahlau, M.; List, B. Asymmetric Counteranion-Directed
Catalysis: Concept, Definition, and Applications. Angew. Chem., Int.
Ed. 2013, 52, 518−533. (b) James, T.; van Gemmeren, M.; List, B.
Development and Applications of Disulfonimides in Enantioselective
Organocatalysis. Chem. Rev. 2015, 115, 9388−9409.
(13) (a) Mathieu, B.; de Fays, L.; Ghosez, L. The search for tolerant
Lewis acid catalysts.: Part 1: Chiral silicon Lewis acids derived from
(−)-myrtenal. Tetrahedron Lett. 2000, 41, 9561−9564. (b) Mathieu,
B.; Ghosez, L. Trimethylsilyl bis(trifluoromethanesulfonyl)imide as a
tolerant and environmentally benign Lewis acid catalyst of the Diels−
Alder reaction. Tetrahedron 2002, 58, 8219−8226. (c) Tang, Z.;
Mathieu, B.; Tinant, B.; Dive, G.; Ghosez, L. The search for tolerant
Lewis acid catalysts. Part 2: Enantiopure cycloalkyldialkylsilyl
triflimide catalysts. Tetrahedron 2007, 63, 8449−8462.
(14) (a) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. A High Yield
Procedure for the Me3SiNTf2-Induced Carbon-Carbon Bond-
Forming Reactions of Silyl Nucleophiles with Carbonyl Compounds:
The Importance of Addition Order and Solvent Effects. Synlett 2001,
2001, 1851−1854. (b) Zhang, Y.; Lay, F.; Garcia-Garcia, P.; List, B.;
Chen, E. Y. X. High-Speed Living Polymerization of Polar Vinyl
Monomers by Self-Healing Silylium Catalysts. Chem. - Eur. J. 2010,
16, 10462−10473. (c) Mahlau, M.; Garcia-Garcia, P.; List, B.
Asymmetric Counteranion-Directed Catalytic Hosomi−Sakurai Re-
action. Chem. - Eur. J. 2012, 18, 16283−16287. (d) Zhang, Z.; Bae, H.
Y.; Guin, J.; Rabalakos, C.; van Gemmeren, M.; Leutzsch, M.;
Klussmann, M.; List, B. Asymmetric counteranion-directed Lewis acid
organocatalysis for the scalable cyanosilylation of aldehydes. Nat.
Commun. 2016, 7, 12478.
(15) (a) Kaib, P. S. J.; Schreyer, L.; Lee, S.; Properzi, R.; List, B.
Extremely Active Organocatalysts Enable a Highly Enantioselective
Addition of Allyltrimethylsilane to Aldehydes. Angew. Chem., Int. Ed.
2016, 55, 13200−13203. (b) Xie, Y.; Cheng, G.-J.; Lee, S.; Kaib, P. S.
J.; Thiel, W.; List, B. Catalytic Asymmetric Vinylogous Prins
Cyclization: A Highly Diastereo- and Enantioselective Entry to
Tetrahydrofurans. J. Am. Chem. Soc. 2016, 138, 14538−14541.
(c) Lee, S.; Kaib, P. S. J.; List, B. Asymmetric Catalysis via Cyclic,
Aliphatic Oxocarbenium Ions. J. Am. Chem. Soc. 2017, 139, 2156−
2159. (d) Lee, S.; Kaib, P. S. J.; List, B. N-Triflylphosphorimidoyl
Trichloride: A Versatile Reagent for the Synthesis of Strong Chiral
Brønsted Acids. Synlett 2017, 28 (12), 1478−1480. (e) Liu, L.; Kim,
H.; Xie, Y.; Fares, C.; Kaib, P. S. J.; Goddard, R.; List, B. Catalytic
Asymmetric [4 + 2]-Cycloaddition of Dienes with Aldehydes. J. Am.
(3) Funel, J.-A.; Abele, S. Industrial Applications of the Diels−Alder
Reaction. Angew. Chem., Int. Ed. 2013, 52, 3822−3863.
(4) (a) Farmer, R. F.; Hamer, J. Asymmetric Induction in a 1,4-
Cycloaddition Reaction. Influence of Variation of Configuration of
the Asymmetric Center. J. Org. Chem. 1966, 31, 2418−2419.
(b) Sauer, J.; Kredel, J. Asymmetrische induktion bei diels-alder-
reaktionen. Tetrahedron Lett. 1966, 7, 6359−6364. (c) Corey, E. J.;
Ensley, H. E. Preparation of an optically active prostaglandin
intermediate via asymmetric induction. J. Am. Chem. Soc. 1975, 97,
6908−6909.
(5) (a) Kagan, H. B.; Riant, O. Catalytic asymmetric Diels Alder
reactions. Chem. Rev. 1992, 92, 1007−1019. (b) Dias, L. C. Chiral
Lewis acid catalysts in diels-Alder cycloadditions: mechanistic aspects
and synthetic applications of recent systems. J. Braz. Chem. Soc. 1997,
8, 289−332. (c) Corey, E. J. Enantioselective Catalysis Based on
Cationic Oxazaborolidines. Angew. Chem., Int. Ed. 2009, 48, 2100−
2117.
(6) (a) Hawkins, J. M.; Loren, S. Two-point-binding asymmetric
Diels-Alder catalysts: aromatic alkyldichloroboranes. J. Am. Chem. Soc.
1991, 113, 7794−7795. (b) Hawkins, J. M.; Loren, S.; Nambu, M.
Asymmetric Lewis Acid-Dienophile Complexation: Secondary
Attraction versus Catalyst Polarizability. J. Am. Chem. Soc. 1994,
116, 1657−1660. (c) Hawkins, J. M.; Nambu, M.; Loren, S.
Asymmetric Lewis Acid-Catalyzed Diels−Alder Reactions of α,β-
Unsaturated Ketones and α,β-Unsaturated Acid Chlorides. Org. Lett.
2003, 5, 4293−4295.
(7) (a) Ryu, D. H.; Lee, T. W.; Corey, E. J. Broad-Spectrum
Enantioselective Diels−Alder Catalysis by Chiral, Cationic Oxazabor-
olidines. J. Am. Chem. Soc. 2002, 124, 9992−9993. (b) Ryu, D. H.;
Corey, E. J. Triflimide Activation of a Chiral Oxazaborolidine Leads
to a More General Catalytic System for Enantioselective Diels−Alder
Addition. J. Am. Chem. Soc. 2003, 125, 6388−6390. (c) Balskus, E. P.;
Jacobsen, E. N. Asymmetric Catalysis of the Transannular Diels-Alder
Reaction. Science 2007, 317, 1736. (d) Mahender Reddy, K.;
Bhimireddy, E.; Thirupathi, B.; Breitler, S.; Yu, S.; Corey, E. J.
Cationic Chiral Fluorinated Oxazaborolidines. More Potent, Second-
Generation Catalysts for Highly Enantioselective Cycloaddition
Reactions. J. Am. Chem. Soc. 2016, 138, 2443−2453. (e) Thirupathi,
B.; Breitler, S.; Mahender Reddy, K.; Corey, E. J. Acceleration of
Enantioselective Cycloadditions Catalyzed by Second-Generation
Chiral Oxazaborolidinium Triflimidates by Biscoordinating Lewis
Acids. J. Am. Chem. Soc. 2016, 138, 10842−10845.
̈
Chem. Soc. 2017, 139, 13656−13659. (f) Bae, H. Y.; Hofler, D.; Kaib,
̈
P. S. J.; Kasaplar, P.; De, C. K.; Dohring, A.; Lee, S.; Kaupmees, K.;
Leito, I.; List, B. Approaching sub-ppm-level asymmetric organo-
catalysis of a highly challenging and scalable carbon−carbon bond
forming reaction. Nat. Chem. 2018, 10, 888−894. (g) Gatzenmeier,
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX