Inorganic Chemistry
Forum Article
(21) Thomas, K. E.; Beavers, C. M.; Ghosh, A. Molecular Structure
of a Gold β-Octakis(trifluoromethyl)-meso-Triarylcorrole: An 85°
Difference in Saddling Dihedral Relative to Copper. Mol. Phys. 2012,
110, 2439−2444.
(22) Vazquez-Lima, H.; Norheim, H. K.; Einrem, R. F.; Ghosh, A.
Cryptic Noninnocence: FeNO Corroles in a New Light. Dalton Trans.
2015, 44, 10146−10151.
Structure of (7,13-Dimethyl-2,3,8,12,17,18-Hexaethylcorrolato)-
manganese(III). Inorg. Chem. 1997, 36, 1564−1570.
(39) Shen, J.; El Ojaimi, M.; Chkounda, M.; Gros, C. P.; Barbe, J.-M.;
Shao, J.; Guilard, R.; Kadish, K. M. Solvent, Anion, and Structural
Effects on the Redox Potentials and UV−visible Spectral Properties of
Mononuclear Manganese Corroles. Inorg. Chem. 2008, 47, 7717−
7727.
(23) Ganguly, S.; Vazquez-Lima, H.; Ghosh, A. Wolves in Sheep’s
Clothing: μ-Oxo-Diiron Corroles Revisited. Chem. - Eur. J. 2016, 22,
10336−10340.
(40) Fryxelius, J.; Eilers, G.; Feyziyev, Y.; Magnuson, A.; Sun, L.;
Lomoth, R. Synthesis and Redox Properties of a [meso-Tris(4-
nitrophenyl)corrolato]Mn(III) Complex. J. Porphyrins Phthalocyanines
2005, 09, 379−386.
(24) Ganguly, S.; Renz, D.; Giles, L. J.; Gagnon, K. J.; McCormick, L.
J.; Conradie, J.; Sarangi, R.; Ghosh, A. Cobalt- and Rhodium-Corrole-
Triphenylphosphine Complexes Revisited: The Question of a
Noninnocent Corrole. Inorg. Chem. 2017, 56, 14788−14800.
(25) Ghosh, A.; Steene, E. High-Valent Transition Metal Centers
versus Noninnocent Ligands in Metallocorroles: Insights from
Electrochemistry and Implications for High-Valent Heme Protein
Intermediates. J. Inorg. Biochem. 2002, 91, 423−436.
(26) Norheim, H.-K.; Capar, J.; Einrem, R. F.; Gagnon, K. J.; Beavers,
C. M.; Vazquez-Lima, H.; Ghosh, A. Ligand Noninnocence in FeNO
Corroles: Insights from β-Octabromocorrole Complexes. Dalton
Trans. 2016, 45, 681−689.
(27) Hocking, R. K.; George, S. D.; Gross, Z.; Walker, F. A.;
Hodgson, K. O.; Hedman, B.; Solomon, E. I. Fe L- and K-edge XAS of
Low-Spin Ferric Corrole: Bonding and Reactivity Relative to Low-Spin
Ferric Porphyrin. Inorg. Chem. 2009, 48, 1678−1688.
(28) Sarangi, R.; Giles, L. J.; Thomas, K. E.; Ghosh, A. Ligand
Noninnocence in Silver Corroles: A XANES Investigation. Eur. J.
Inorg. Chem. 2016, 2016, 3225−3227.
(29) Palmer, J. H.; Lancaster, K. M. Molecular Redox: Revisiting the
Electronic Structures of the Group 9 Metallocorroles. Inorg. Chem.
2012, 51, 12473−12482.
(41) Singh, P.; Dutta, G.; Goldberg, I.; Mahammed, A.; Gross, Z.
Expected and Unexpected Transformations of Manganese(III) Tris(4-
nitrophenyl)corrole. Inorg. Chem. 2013, 52, 9349−9355.
(42) Broring, M.; Hell, C.; Brandt, C. D. Iodomanganesecorrole − a
̈
Stable MnIV-I Species. Chem. Commun. 2007, 1861−1862.
(43) Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.; Gross,
Z. Oxygen Atom Transfer Reactions from Isolated (Oxo)manganese-
(V) Corroles to Sulfides. J. Am. Chem. Soc. 2010, 132, 15233−15245.
́
(44) Broring, M.; Bregier, F.; Kruger, R.; Kleeberg, C. Functional
̈
̈
Porphyrinoids from a Biomimetically Decorated Bipyrrole. Eur. J.
Inorg. Chem. 2008, 35, 5505−5512.
(45) Broring, M.; Hell, C.; Steiner, M.; Brandt, C. D. Halogenido and
̈
Pseudohalogenido Complexes of (2,3,7,8,12,13,17,18-Octaethyl-5,15-
Di-p-tolylcorrolato)manganese(IV). Z. Anorg. Allg. Chem. 2007, 633,
1082−1086.
(46) ESI-MS studies readily revealed a manganese monopyridine
adduct but under no circumstances a bispyridine adduct. These
obervations may be contrasted with those on fully characterized cobalt
corrole bispyridine adducts, for which the four-coordinate, monopyr-
idine, and bispyridine adducts are all readily detectable.47
(47) Ganguly, S.; Conradie, J.; Bendix, J.; Gagnon, K. J.; McCormick,
L. J.; Ghosh, A. Electronic Structure of Cobalt−Corrole−Pyridine
Complexes: Noninnocent Five-Coordinate Co(II) Corrole−Radical
States. J. Phys. Chem. A 2017, 121, 9589−9598.
(30) Ganguly, S.; Giles, L. J.; Thomas, K. E.; Sarangi, R.; Ghosh, A.
Ligand Noninnocence in Iron Corroles: Insights from Optical and X-
ray Absorption Spectroscopies and Electrochemical Redox Potentials.
Chem. - Eur. J. 2017, 23, 15098−15106.
(31) Ghosh, A.; Wondimagegn, T.; Parusel, A. B. J. Electronic
Structure of Gallium, Copper, and Nickel Complexes of Corrole.
High-Valent Transition Metal Centers Versus Noninnocent Ligands. J.
Am. Chem. Soc. 2000, 122, 5100−5104.
(48) de Groot, F. High-Resolution X-ray Emission and X-ray
Absorption Spectroscopy. Chem. Rev. 2001, 101, 1779−1808.
(49) Sarangi, R. X-ray Absorption Near-Edge Spectroscopy in
Bioinorganic Chemistry: Application to M−O2 systems. Coord. Chem.
Rev. 2013, 257, 459−472.
(32) Ghosh, A.; Steene, E. High-Valent Transition Metal Centers and
Noninnocent Ligands in Metalloporphyrins and Related Molecules: A
Broad Overview Based on Quantum Chemical Calculations. JBIC, J.
Biol. Inorg. Chem. 2001, 6, 739−752.
(33) Gao, B.; Ou, Z.; Chen, X.; Huang, S.; Li, B.; Fang, Y.; Kadish, K.
M. Spectroelectrochemical Characterization of meso Triaryl-Substi-
tuted Mn(IV), Mn(III) and Mn(II) corroles. Effect of Solvent and
Oxidation State on UV-visible Spectra and Redox Potentials in
Nonaqueous Media. J. Porphyrins Phthalocyanines 2014, 18, 1131−
1144.
(50) XANES of Mn[TpCF3PC](py)n as a solution in (frozen) neat
pyridine revealed a pre-edge of somewhat diminished intensity relative
to the solid sample, indicating reduced centrosymmetry in the solution
species, consistent with an increased proportion of the bispyridine
adduct (n = 2). For a description of the EXAFS, see the Supporting
(51) Fang, Y.; Ou, Z.; Kadish, K. M. Electrochemistry of Corroles in
Nonaqueous Media. Chem. Rev. 2017, 117, 3377−3419.
(52) For electrochemical HOMO−LUMO gaps of closed-shell
corrole derivatives, see: Simkhovich, L.; Mahammed, A.; Goldberg, I.;
Gross, Z. Synthesis and Characterization of Germanium, Tin,
Phosphorus, Iron, and Rhodium Complexes of Tris-
(pentafluorophenyl)corrole, and the Utilization of the Iron and
Rhodium Corroles as Cyclopropanation Catalysts. Chem. - Eur. J.
2001, 7, 1041−1055.
(34) Ou, Z.; Erben, C.; Autret, M.; Will, S.; Rosen, D.; Lex, J.; Vogel,
E.; Kadish, K. M. Manganese(III) and Manganese(IV) Corroles:
Synthesis, Spectroscopic, Electrochemical and X-ray Structural
Characterization. J. Porphyrins Phthalocyanines 2005, 09, 398−412.
(35) Broring, M.; Cordes, M.; Kohler, S. Manganese(IV) Corroles
̈
̈
with σ-Aryl Ligands. Z. Anorg. Allg. Chem. 2008, 634, 125−130.
(36) Alemayehu, A. B.; Conradie, J.; Ghosh, A. A First TDDFT
Study of Metallocorrole Electronic Spectra: Copper meso-Triarylcor-
roles Exhibit Hyper Spectra. Eur. J. Inorg. Chem. 2011, 12, 1857−1864.
(37) TDDFT calculations aimed at simulating the substituent
sensitivity of noninnocent metallotriarylcorroles have generally not
been particularly successful. Key calculated features such as the Soret
and Q bands tend to be contaminated with unphysical long-range
excitations from lone pairs on the para substituent X to the corrole π
system. Accordingly, we have refrained from employing TDDFT
calculations to model the optical spectra of MnCl and MnPh corroles.
(38) Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M.
O.; Tondello, E.; Boschi, T. Tetracoordinated Manganese(III)
Alkylcorrolates. Spectroscopic Studies and the Crystal and Molecular
(53) Koszarna, B.; Gryko, D. T. Efficient Synthesis of meso-
Substituted Corroles in a H2O−MeOH Mixture. J. Org. Chem. 2006,
71, 3707−3717.
(54) Use of the positive mode in ESI-MS analysis of MnCl corroles
invariably led to a loss of chlorine and to the detection of [M − Cl]+ as
the major species.
(55) CELL NOW: Index Twins and Other Problem Crystals, version
2008/4; Bruker, 2016.
(56) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D.
Comparison of Silver and Molybdenum Microfocus X-ray Sources for
Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48,
3−10.
(57) TWINABS: Bruker AXS Scaling for Twinned Crystals, version
2012/1; Bruker, 2016.
M
Inorg. Chem. XXXX, XXX, XXX−XXX