10.1002/chem.201801070
Chemistry - A European Journal
COMMUNICATION
pinB–Bpin
Gosmini, Synthesis 2014, 46, 2258; f) M. T. Pirnot, Y.-M. Wang, S. L.
Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48; Angew. Chem. 2016,
128, 48; g) X. Dong, Q. Liu, Y. Dong, H. Liu, Chem. Eur. J. 2017, 23,
248. Selected examples: h) A. M. Berman, J. S. Johnson, J. Am. Chem.
Soc. 2004, 126, 5680; i) M. J. Campbell, J. S. Johnson, Org. Lett. 2007,
9, 1521; j) S. Liu, L. S. Liebeskind, J. Am. Chem. Soc. 2008, 130, 6918;
k) T. J. Barker, E. R. Jarvo, J. Am. Chem. Soc. 2009, 131, 15598; l) S.
N. Mlynarski, A. S. Karns, J. P. Morken, J. Am. Chem. Soc. 2012, 134,
16449; m) C. Zhu, G. Li, D. H. Ess, J. R. Falck, L. Kürti, J. Am. Chem.
Soc. 2012, 134, 18253; n) R. P. Rucker, A. M. Whittaker, H. Dang, G.
Lalic, J. Am. Chem. Soc. 2012, 134, 6571; o) J. He, T, Shigenari, J.-Q.
Yu, Angew. Chem. Int. Ed. 2015, 54, 6545; Angew. Chem. 2015, 127,
6645; p) Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science
2015, 349, 62; q) D. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc.
2015, 137, 15620.
P
P
P
δ 30.6 (11B)
CuOtBu
pinB–Bpin
[D8]THF, RT
almost
no change
+
Cu-Bpin
[D8]THF, RT
pinB OtBu
δ 21.2 (11B)
P
δ –4.8 (31P{1H})
no signal (11B)
(R,R)-PTBP-BDPP
δ –6.8 (31P{1H})
pinB–Bpin
P
P
1a
NBn2
Cu
full consumption
2a
BzO NBn2
(NaOtBu)
Bpin
Bpin
+
[D8]THF, RT, 2 h
[D8]THF, RT
pinB OtBu
δ 21.2 (11B)
3aa
in case with NaOtBu
δ 34.0 (11B)
δ 35.0 (11B)
also confirmed by 1H NMR
trace w/o NaOtBu
major product w/NaOtBu
Scheme 5. NMR studies.
[10] For stoichiometric reactions of borylcopper species with alkenes, see:
a) D. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics 2006, 25,
2405; b) J. Lee, S. Radomkit, S. Torker, J. del Pozo, A. H. Hoveyda,
Nat. Chem. 2018, 10, 99. Recent computational studies: c) S. Tobisch,
Chem. Eur. J. 2017, 23, 17800.
Acknowledgements ((optional))
This work was supported by JSPS KAKENHI Grant Nos. JP
15H05485 (Grant-in-Aid for Young Scientists (A)) to K.H. and JP
17H06092 (Grant-in-Aid for Specially Promoted Research) to
M.M. We thank Dr. Mitsuhisa Yamano (SPERA PHARMA, Inc.)
for generous gift of (R,R)-PTBP-BDPP.
[11] Reviews: a) K. Semba, T. Fujihara, J. Terao, Y. Tsuji, Tetrahedron
2015, 71, 2183; b) H. Yoshida, ACS Catal. 2016, 6, 1799. Selected
recent examples of bisphosphine-based enantioselective catalysts: c) F.
Meng, F. Haeffner, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136,
11304; d) K. Kubota, K. Hayama, H. Iwamoto, H. Ito, Angew. Chem. Int.
Ed. 2015, 54, 8809; Angew. Chem. 2015, 127, 8933; e) K. Kubota, Y.
Watanabe, K. Hayama, H. Ito, J. Am. Chem. Soc. 2016, 138, 4338; f) N.
Kim, J. T. Han, D. H. Ryu, J. Yun, Org. Lett. 2017, 19, 6144.
[12] See the Supporting Information for more detailed optimization studies.
The absolute configuration of 3ja-O (Table 1, entry 9) was determined
to be S by comparison of specific rotation to the reported value. Others
were tentatively assigned by analogy.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff)
Keywords: asymmetric catalysis · boron· chiral amine · copper ·
electrophilic amination
[13] For limited examples of terminal borylation selectivity in the reaction
with unactivated terminal alkenes, see: a) K. Kubota, E. Yamamoto, H.
Ito, J. Am. Chem. Soc. 2013, 135, 2635; b) W. Su, T.-J. Gong, X. Lu,
M.-Y. Xu, C.-G. Yu, Z.-Y. Xu, H.-Z. Yu, B. Xiao, Y. Fu, Angew. Chem.
Int. Ed. 2015, 54, 12957; Angew. Chem. 2015, 127, 13149; c) T. Itoh, T.
Matsuda, Y. Shimizu, M. Kanai, Chem. Eur. J. 2015, 21, 15955, and ref
8d. Computational studies: d) L. Dang, H. Zhao, Z. Lin, T. B. Marder,
Organometallics 2007, 26, 2824; e) Z.-Y. Xu, Y.-Y. Jiang, W. Su, H.-Z.
YU, Y. Fu, Chem. Eur. J. 2016, 22, 14611.
[1]
[2]
J. R. Coombs, J. R. Morken, Angew. Chem. Int. Ed. 2016, 55, 2636;
Angew. Chem. 2016, 128, 2682.
a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
1994, 94, 2483; b) H. Becker, K. B. Sharpless, Angew. Chem. Int. Ed.
Engl. 1996, 35, 448; Angew. Chem. 1996, 108, 447.
[3]
[4]
a) L. T. Kliman, S. N. Mlynarski, J. P. Morken, J. Am. Chem. Soc. 2009,
131, 13210; b) J. R. Coombs, F. Haeffner, L. T. Kliman, J. P. Morken, J.
Am. Chem. Soc. 2013, 135, 11222.
[14] Except for dibenzylamine-derived aminoborated products, the oxidation
with aq. H2O2 gave somewhat lower yields of aminoalcohols because of
partial decomposition.
K. Toribatake, H. Nishiyama, Angew. Chem. Int. Ed. 2013, 52, 11011;
Angew. Chem. 2013, 125, 11217.
[5]
[6]
S. N. Mlynarski, C. H. Schuster, J. P. Morken, Nature 2013, 505, 386.
L. Fang, L. Yan, F. Haeffner, J. P. Morken, J. Am. Chem. Soc. 2016,
138, 2508.
[15] This phenomenon suggests the reversibility of alkene insertion into Cu-
B bond of L*Cu-Bpin species (Scheme 1). However, we obtained no
solid evidence in the NMR studies (Scheme 5).
[7]
a) D. Y. Kondakov, E. Negishi, J. Am. Chem. Soc. 1995, 117, 10771; b)
D. Y. Kondakov, E. Negishi, J. Am. Chem. Soc. 1996, 118, 1577; c) T.
Novak, Z. Tan, B. Liang, E. Negishi, J. Am. Chem. Soc. 2005, 127,
2838; d) B. Liang, T. Novak, Z. Tan, E. Negishi, J. Am. Chem. Soc.
2006, 128, 2770.
[16] S. N. Mlynarski, A. S. Karns, J. P. Morken, J. Am. Chem. Soc. 2012,
134, 16449.
[17] J. Raushel, D. L. Sandrock, K. V. Josyula, D. Pakyz, G. A. Molander, J.
Org. Chem. 2011, 76, 2762.
[18] A. J. J. Lennox, G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2012, 51,
9385; Angew. Chem. 2012, 124, 9519. A more common strategy with
KHF2 gave a lower yield (<30%) probably because of competitive
decomposition.
[8]
R a) N. Matsuda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc.
2013, 135, 4934; b) R. Sakae, N. Matsuda, K. Hirano, T. Satoh, M.
Miura, Org. Lett. 2014, 16, 1228; c) R. Sakae, K. Hirano, T. Satoh, M.
Miura, Angew. Chem. Int. Ed. 2015, 54, 613; Angew. Chem. 2015, 127,
623; d) R. Sakae, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137,
6460; e) D. Nishikawa, K. Hirano, M. Miura, Org. Lett. 2016, 18, 4856;
f) K. Kato, K. Hirano, M. Miura, Angew. Chem. Int. Ed. 2016, 55, 14400;
Angew. Chem. 2016, 128, 14612; g) K. Kato, K. Hirano, M. Miura, J.
Org. Chem. 2017, 82, 10418; h) A. Parra, L. Amenós, M. Guisán-
Ceinos, A. López, J. L. G. Ruano, M. Tortosa, J. Am. Chem. Soc. 2014,
136, 15833.
[19] The enantiomeric ratio of borate salt
5 was confirmed after the
oxidation into aminoalcohol 3aa-O.
[20] T. H. Lemmen, G. V. Goeden, J. C. Huffman, R. L. Geerts, K. G.
Caulton, Inorg. Chem. 1990, 29, 3680.
[21] E. A. Romero, J. L. Peltier, R. Jazzar, G. Bertrand, Chem. Commun.
2016, 52, 10563.
[22] C. Borner, L. Anders, K. Brandhorst, C. Kleeberg, Organometallics
2017, 36, 4687.
[9]
For reviews on electrophilic aminations with hydroxylamines, see: a) E.
Erdik, M. Ay, Chem. Rev. 1989, 89, 1947; b) K. Narasaka, M. Kitamura,
Eur. J. Org. Chem. 2005, 21, 4505; c) E. Ciganek, Org. React. 2009, 72,
1; d) T. J. Barker, E. R. Jarvo, Synthesis 2011, 3954; e) M. Corpet, C.
[23] Similar additional roles of metal tert-butoxides were discussed in
related copper-catalyzed borylation reactions; H. Ito, T. Miya, M.
Sawamura, Tetrahedron 2012, 68, 3423.
This article is protected by copyright. All rights reserved.